Biology Preprofessional

This program provides a broad, general overview of the structure, function, growth, origin, evolution, and distribution of living organisms. Biology students take courses in biology, chemistry, physics, calculus, and statistics. The major is flexible and combines the faculty and resources of two UF colleges to prepare students for career success.

About This Program

- **College**: Agricultural and Life Sciences (http://catalog.ufl.edu/UGRD/colleges-schools/UGAGL)
- **Degree**: Bachelor of Science
- **Specializations**: Applied Biology (http://catalog.ufl.edu/UGRD/colleges-schools/UGAGL/BLY_BS/BLY_BS01) | Biotechnology (http://catalog.ufl.edu/UGRD/colleges-schools/UGAGL/BLY_BS/BLY_BS02) | Natural Science (http://catalog.ufl.edu/UGRD/colleges-schools/UGAGL/BLY_BS/BLY_BS03) | Preprofessional (p. 1)
- **Credits for Degree**: 120
- **Additional Information**
- **Related Biology Programs**

To graduate with this major, students must complete all university, college, and major requirements.

The biology major develops fundamental knowledge of animals, plants and microorganisms. The four specializations offered by the College of Agricultural and Life Sciences are tailored to meet the needs of preprofessional students, those preparing for graduate studies in biology or specialized areas such as bioinformatics, ecology, genetics and molecular biology and those seeking a career in biotechnology, education, natural resource management and environmental or biotechnology law.

Coursework for the Major

College of Agricultural and Life Sciences (CALS) students in the biology major choose one of four specializations: applied biology, biotechnology, natural science or preprofessional biology. These specializations require significant introductory coursework and credits in general biology, calculus and/or statistics, general chemistry, organic chemistry and physics. Students who are uncertain about which specialization to choose should consult a biology advisor for information and guidance on curriculum planning. Students can individualize their curriculum through approved specialization electives in the life sciences.

Applied Biology

For students interested in learning how fundamental biology is applied to solving problems. This specialization provides exposure to the major issues facing sustainability of human populations and natural resources.

Biotechnology

Prepares students for careers where knowledge of molecular biology and genetic engineering are important. Students will have the opportunity to learn various techniques and scientific procedures in molecular biology, virology, bioengineering, cell and tissue culture and bioinformatics.

Natural Science

For students interested in descriptive and interpretive biology, with an emphasis on field biology. The specialization provides exposure to the major forms of flora and fauna, and integrates some of the major elements that influence flora and fauna, namely soil/water relations and human activities.

Preprofessional

For students preparing for admission to medical, dental, optometry, veterinary or other professional schools.

Relevant Minors and/or Certificates

UFTeach Program

There is a severe shortage of qualified secondary school biology teachers in Florida and nationwide. Students interested in becoming part of this high-demand profession should see a biology advisor or the UFTeach advisor. UFTeach students complete the UFTeach minor in science teaching with their B.S. in biology and have the coursework and preparation for professional teacher certification in Florida when they graduate.

More Info (http://education.ufl.edu/uf-teach)

Bioinformatics

Bioinformatics skills are valuable for students who may seek careers which will necessitate the analysis of genomic data. This minor provides students the opportunity to learn programming skills, mine genomic data, and participate in independent research.

Research

All biology majors are encouraged to participate in research. Research experience is valuable on many levels: It diversifies the college experience; teaches how scientists apply the knowledge gained in the classroom to real world questions; provides the opportunity to work with and get to know researchers who are the best in their field; enables participation in cutting edge scientific questions and techniques; enhances the student’s resume/CV when applying to graduate or professional school; and finally, it is essential to help the student determine if science is an appropriate career choice.

More Info (http://major.biology.ufl.edu/do-research)

CALS biology majors may participate in research for course credit as a scholar (e.g., University Scholar, HHMI Science for Life Scholar), as a volunteer, or, in rare cases, as a paid research assistant.

Related Biology Programs

- Bachelor of Arts or Bachelor of Science in Biology, CLAS (http://catalog.ufl.edu/UGRD/colleges-schools/UGLAS/BIO_BA_BS)
- Bachelor of Arts in Biology, UF Online (http://catalog.ufl.edu/UGRD/colleges-schools/UGLAS/BIO_BA_UFO)

Preprofessional

This specialization prepares biology majors for admission to medical, dental, optometry or veterinary school, and it also is excellent preparation for graduate study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 2010</td>
<td>Integrated Principles of Biology 1 & 2011L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>and Integrated Principles of Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory 1</td>
<td></td>
</tr>
<tr>
<td>BSC 2011</td>
<td>Integrated Principles of Biology 2 & 2011L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>and Integrated Principles of Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory 2</td>
<td></td>
</tr>
</tbody>
</table>
CHM 2045 | General Chemistry 1 | 4
& 2045L | and General Chemistry 1 Laboratory
CHM 2046 | General Chemistry 2 | 4
& 2046L | and General Chemistry 2 Laboratory
CHM 2210 | Organic Chemistry 1 | 3
CHM 2211 | Organic Chemistry 2 | 5
& 2211L | and Organic Chemistry Laboratory
MAC 2311 | Analytic Geometry and Calculus 1 | 4
MAC 2312 | Analytic Geometry and Calculus 2 | 4
or STA 2023 | Introduction to Statistics 1
Select one option: 8-10

Option A
PHY 2053 | Physics 1 | 3
& 2053L | and Laboratory for Physics 1
PHY 2054 | Physics 2 | 3
& 2054L | and Laboratory for Physics 2

Option B
PHY 2048 | Physics with Calculus 1 | 3
& 2048L | and Laboratory for Physics with Calculus 1
PHY 2049 | Physics with Calculus 2 | 3
& 2049L | and Laboratory for Physics with Calculus 2

Required Core Coursework
AGR 3303 | Genetics | 3
or PCB 3063 | Genetics | 3
Select one: 3-5
BSC 3096 | Human Physiology | 3
PCB 3713C | Cellular and Systems Physiology | 3
PCB 4723C | Physiology and Molecular Biology of Animals | 3
Select one: 3-4
MCB 3020 | Basic Biology of Microorganisms | 3
& 3020L | and Laboratory for Basic Biology of Microorganisms | 3
PCB 3134 | Eukaryotic Cell Structure and Function | 3
BCH 4024 | Introduction to Biochemistry and Molecular Biology | 4
BSC 4936 | Critical Analysis of Biological Research | 2
Approved additional life science courses (minimum) | 12
Total Credits | 67-72

Critical Tracking

Critical Tracking records each student’s progress in courses that are required for entry to each major. Please note the critical-tracking requirements below on a per-semester basis.

Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites (http://www.flvc.org/cpp/displayRecord.jsp?cip=260101&track=01) may be used for transfer students.

Semester 1
- Complete CHM 2045/CHM 2045L or MAC 2311
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 2
- Complete CHM 2045/CHM 2045L and MAC 2311
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 3
- Complete CHM 2046/CHM 2046L, BSC 2010/BSC 2010L
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 4
- Complete BSC 2011/BSC 2011L
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 5
- Complete all critical-tracking courses, including labs
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Model Semester Plan

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student’s academic record and scheduling availability of courses. Prerequisites still apply.

Course Title Credits

Semester One
CHM 2045 | General Chemistry 1 | 4
& 2045L | and General Chemistry 1 Laboratory (Critical Tracking; State Core Gen Ed Biological and Physical Sciences)
IDS 1161 | What is the Good Life (Gen Ed Humanities) | 3
State Core Gen Ed Composition (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#gendetext); Writing Requirement | 3
Elective | 2
State Core Gen Ed Social and Behavioral Sciences (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#gendetext) | 3

Semester Two
Select one: 3-4
AEB 2014 | Economic Issues, Food and You (Gen Ed Social and Behavioral Sciences) | 3
AEB 3103 | Principles of Food and Resource Economics (Gen Ed Social and Behavioral Sciences) | 3
ECO 2013 | Principles of Macroeconomics (Gen Ed Social and Behavioral Sciences) | 3
ECO 2023 | Principles of Microeconomics (Gen Ed Social and Behavioral Sciences) | 3
CHM 2046 | General Chemistry 2 | 4
& 2046L | and General Chemistry 2 Laboratory (Critical Tracking; State Core Gen Ed Mathematics)
MAC 2311 | Analytic Geometry and Calculus 1 (Critical Tracking; State Core Gen Ed Mathematics) | 4
State Core Gen Ed Humanities (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#gendetext) | 3

Credits 14-15
Semester Three

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 2010 & 2010L</td>
<td>Integrated Principles of Biology 1 and Integrated Principles of Biology Laboratory 1 (Critical Tracking; Gen Ed Biological Sciences and Physical Sciences)</td>
<td>4</td>
</tr>
<tr>
<td>CHM 2210</td>
<td>Organic Chemistry 1</td>
<td>3</td>
</tr>
<tr>
<td>STA 2023 or MAC 2312</td>
<td>Introduction to Statistics 1 (Gen Ed Mathematics) or Analytic Geometry and Calculus 2</td>
<td>3-4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Gen Ed Composition; Writing Requirement</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Four

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 2011 & 2011L</td>
<td>Integrated Principles of Biology 2 and Integrated Principles of Biology Laboratory 2 (Critical Tracking; Gen Ed Biological Sciences)</td>
<td>4</td>
</tr>
<tr>
<td>CHM 2211 & 2211L</td>
<td>Organic Chemistry 2 and Organic Chemistry Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Semester Five

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 3030C or SPC 2608</td>
<td>Effective Oral Communication or Introduction to Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>BCH 4024</td>
<td>Introduction to Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2053 or PHY 2048</td>
<td>Physics 1 or Physics with Calculus 1</td>
<td>3-4</td>
</tr>
<tr>
<td>PHY 2053L or PHY 2048L</td>
<td>Laboratory for Physics 1 or Laboratory for Physics with Calculus 1</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Six

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 3033C</td>
<td>Research and Business Writing in Agricultural and Life Sciences (Writing Requirement)</td>
<td>3</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>MCB 3020 & 3020L</td>
<td>Basic Biology of Microorganisms and Laboratory for Basic Biology of Microorganisms</td>
<td></td>
</tr>
<tr>
<td>PCB 3134</td>
<td>Eukaryotic Cell Structure and Function</td>
<td></td>
</tr>
<tr>
<td>PHY 2054 or PHY 2049</td>
<td>Physics 2 or Physics with Calculus 2</td>
<td>3-4</td>
</tr>
<tr>
<td>PHY 2054L or PHY 2049L</td>
<td>Laboratory for Physics 2 or Laboratory for Physics with Calculus 2</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Semester Seven

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 3303 or PCB 3063</td>
<td>Genetics or Genetics</td>
<td>3-4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Life science courses</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Semester Eight

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 4936</td>
<td>Critical Analysis of Biological Research</td>
<td>2</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>3-5</td>
</tr>
<tr>
<td>PCB 3096</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>PCB 3713C or PCB 4723C</td>
<td>Cellular and Systems Physiology or Physiology and Molecular Biology of Animals</td>
<td>4</td>
</tr>
</tbody>
</table>

Academic Learning Compact

Biology is the study of the many diverse forms, processes and systems of life. These studies range across all levels of the biological hierarchy, from the simplest to the most complex life forms, across all environments on the earth and across recent and evolutionary time that interconnects ancestors to their descendants.

To understand this vast diversity, the field of biology correspondingly relies on integrative and comparative approaches for the resolution of the general processes, principles and unifying themes that govern living systems. Biology is therefore very interdisciplinary and biologists rely on knowledge from the physical sciences and mathematics, as well as from across the disciplines and subdisciplines of biology for advances and breakthroughs.

The biology major is administered jointly by the College of Agricultural and Life Sciences and the College of Liberal Arts and Sciences.

Before Graduating Students Must

- Achieve a passing score for all content subsections of the Major Field Test for Biology. Content subscore areas are molecular biology and genetics, organismal biology, evolution, ecology and population biology.
- Achieve a passing score on the analytical skills assessment indicator of the Major Field Test for Biology.
- Achieve a passing score on the bioethics module quiz in BSC 4936. The content of the module and quiz are reviewed and approved by a faculty committee.
- Achieve a passing score on the scientific literacy paper assignment given in BSC 4936. This paper is graded using a faculty-developed rubric.
- Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content

1. Identify, describe and explain the basic terminology, concepts, methodologies and theories used within the biological sciences.

Critical Thinking

2. Analyze biological information and develop reasoned solutions to problems using the processes and applications of scientific inquiry.
3. Discriminate ethical behavior from unethical behavior in scientific research.

Communication

4. Communicate knowledge, ideas and reasoning clearly and effectively in written or oral forms appropriate to the biological sciences.

Curriculum Map for All Specializations except CALS

Biotechnology

\[I = Introduced; R = Reinforced; A = Assessed \]
Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 3303 or PCB 3063 or PCB 4522</td>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>ANS 3319C or R BOT 3503 or HOS 4304 or PCB 3713C or PCB 4723C</td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>BSC 1920</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>BSC 2010</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>BSC 2011</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>BSC 4936</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MCB 3020 and 3020L, or PCB 3134 or PCB 4674</td>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

Assessment Types
- Major field test for biology
- Bioethics module
- Scientific literacy paper

Curriculum Map for CALS Biotechnology

I = Introduced; R = Reinforced; A = Assessed

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 3303 or PCB 3063 or PCB 4522</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSC 1920</td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>BSC 2010</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>BSC 2011</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>BSC 4936</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MCB 3020 and 3020L, or PCB 3134 or PCB 4674</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Types
- Major field test for biology
- Bioethics module
- Scientific literacy paper