MARINE SCIENCES | CALS

From oceans to coastal wetlands, students will learn about marine organisms and their behaviors and interactions with the environment. Marine Sciences students study oceanography, statistics, fisheries and aquatic sciences, and invertebrate biodiversity. Students can focus elective courses on ecology, organismal biology, economics, human dimensions, and/or quantitative or professional skills.

About this Program
- **College:** Agricultural and Life Sciences (http://catalog.ufl.edu/UGRD/colleges-schools/UGAGL)
- **Degree:** Bachelor of Science
- **Credits for Degree:** 120
- **More Info**

To graduate with this major, students must complete all university, college, and major requirements.

Related Programs
- Combination Degrees
- Fisheries and Aquatic Sciences Minor
- Marine Sciences | CLAS
- Natural Resource Conservation

The university promotes an integrated approach to marine science education and research to prepare students for a variety of rewarding academic and professional careers. This major, offered cooperatively with the College of Liberal Arts and Sciences, allows students to tailor a curriculum that suits their interests and career goals.

The curriculum provides students with the core scientific and quantitative skills necessary for success. Lower-division courses build a strong foundation in basic sciences and math while upper-division courses provide opportunity for specialization. Students in the College of Agricultural and Life Sciences (CALS) complete an upper-division core that concentrates on biological and ecological marine science essentials while also giving students a critical understanding of how statistics and economics are integrated into marine science and resource management.

Students work closely with a faculty advisor to create an individualized curriculum plan of at least 18 approved elective credits and 15-16 hours of planned credits. These can include courses on resource management, human dimensions, conservation, quantitative population assessment and others. Students must complete their plans along with the approval of a faculty advisor before reaching 70 credits.

Coursework for the Major
The major requires 120 credits and at least 30 credits of upper-division coursework in the major must be completed at UF.

Required Coursework

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 2010</td>
<td>Integrated Principles of Biology 1</td>
<td>4</td>
</tr>
<tr>
<td>& 2010L</td>
<td>and Integrated Principles of Biology Laboratory 1</td>
<td></td>
</tr>
<tr>
<td>BSC 2011</td>
<td>Integrated Principles of Biology 2</td>
<td>4</td>
</tr>
<tr>
<td>& 2011L</td>
<td>and Integrated Principles of Biology Laboratory 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045</td>
<td>General Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>& 2045L</td>
<td>and General Chemistry 1 Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHM 2046</td>
<td>General Chemistry 2</td>
<td>4</td>
</tr>
<tr>
<td>& 2046L</td>
<td>and General Chemistry 2 Laboratory</td>
<td></td>
</tr>
<tr>
<td>FAS 4202C</td>
<td>Biology of Fishes</td>
<td>4</td>
</tr>
<tr>
<td>OCE 1001</td>
<td>Introduction to Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>STA 2023</td>
<td>Introduction to Statistics 1</td>
<td>3</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAS 4270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marine Ecological Processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOO 4926</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics in Zoology (Marine Ecology)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FAS 4932</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics in Fisheries and Aquatic Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Biology and Ecology of Algae)</td>
<td></td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FNR 3410C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural Resource Sampling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STA 3024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Statistics 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STA 4210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regression Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STA 4222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Survey Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FNR 4660</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural Resource Policy and Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GLY 3083C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Marine Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytic Geometry and Calculus 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Physics 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 2004L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Laboratory for Applied Physics 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZOO 4205C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invertebrate Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Approved marine sciences electives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Planned electives, sufficient to reach a total of 60 upper-division credits</td>
<td>15-16</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>86-87</td>
</tr>
</tbody>
</table>

Critical Tracking

Critical Tracking records each student's progress in courses that are required for entry to each major. Please note the critical-tracking requirements below on a per-semester basis.

Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites (http://www.flvc.org/cpp/displayRecord.jsp?cip=309999&track=01) may be used for transfer students.

Semester 1
- Complete OCE 1001 and 1 of the following, excluding labs:
 - 2.5 GPA required for all critical-tracking courses
 - 2.0 UF GPA required

Semester 2
- Complete 2 additional critical-tracking courses, excluding labs
 - 2.5 GPA required for all critical-tracking courses
 - 2.0 UF GPA required

Semester 3
- Complete 1 additional critical-tracking course, excluding labs
 - 2.5 GPA required for all critical-tracking courses
 - 2.0 UF GPA required
Semester 4
- Complete 2 additional critical-tracking courses, excluding labs
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 5
- Complete all critical-tracking courses, including labs
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required
- 2.0 Upper Division GPA required

Semester 6
- Complete 1 of the remaining required major courses from STA 2023, FAS 4202C, FAS 4270 or PCB 4460, FNR 3410C or STA 3024 or STA 4210 or STA 4222, FAS 4932, GLY 3083C, FNR 4660, ZOO 4205C
- Submit faculty advisor-approved Curriculum Plan
- 2.0 Upper Division GPA required
- 2.0 UF GPA required

Semester 7
- Complete 3 additional remaining required major courses
- 2.0 Upper Division GPA required
- 2.0 UF GPA required

Semester 8
- Complete all remaining required major courses
- 2.0 Upper Division GPA required
- 2.0 UF GPA required

Model Semester Plan

Students are expected to complete the writing requirement while in the process of taking the courses below. Students are also expected to complete the general education international (GE-N) and diversity (GE-D) requirements concurrently with another general education requirement (typically, GE-C, H or S).

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student’s academic record and scheduling availability of courses. Prerequisites still apply.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMH 2045 & 2045L</td>
<td>General Chemistry 1 and General Chemistry 1 Laboratory (Critical Tracking: State Core Gen Ed Biological and Physical Sciences)</td>
<td>4</td>
</tr>
<tr>
<td>OCE 1001</td>
<td>Introduction to Oceanography (Critical Tracking: Gen Ed Biological Sciences and Physical Sciences)</td>
<td>3</td>
</tr>
<tr>
<td>Quest 1 (Gen Ed Humanities)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

State Core Gen Ed Social and Behavioral Sciences (http://catalog.ufl.edu/UGRD/academic-programs/general-education/genedcoursestext) 3
Elective 16

Semester Two | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2046 & 2046L</td>
<td>General Chemistry 2 and General Chemistry 2 Laboratory (Critical Tracking: Gen Ed Biological Sciences and Physical Sciences) 4</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>Analytic Geometry and Calculus 1 (Critical Tracking: State Core Gen Ed Mathematics) 4</td>
</tr>
<tr>
<td>State Core Gen Ed Composition (http://catalog.ufl.edu/UGRD/academic-programs/general-education/genedcoursestext); Writing Requirement 3</td>
<td></td>
</tr>
<tr>
<td>State Core Gen Ed Humanities (http://catalog.ufl.edu/UGRD/academic-programs/general-education/genedcoursestext) 3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Three | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one:</td>
<td></td>
</tr>
<tr>
<td>AEB 3103</td>
<td>Principles of Food and Resource Economics 4</td>
</tr>
<tr>
<td>ECO 2023</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>ECO 2013</td>
<td>Principles of Macroeconomics (Gen Ed Social and Behavioral Sciences)</td>
</tr>
<tr>
<td>BSC 2010 & 2010L</td>
<td>Integrated Principles of Biology 1 and Integrated Principles of Biology Laboratory 1 (Critical Tracking: Gen Ed Biological Sciences and Physical Sciences) 4</td>
</tr>
<tr>
<td>STA 2023</td>
<td>Introduction to Statistics 1 (Gen Ed Mathematics) 3</td>
</tr>
<tr>
<td>FAS 2024</td>
<td>Sustainable Fisheries (Recommended elective) 3</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>Analytic Geometry and Calculus 2 (recommended elective) 4</td>
</tr>
</tbody>
</table>

Semester Four | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC 2011 & 2011L</td>
<td>Integrated Principles of Biology 2 and Integrated Principles of Biology Laboratory 2 (Critical Tracking: Gen Ed Biological Sciences and Physical Sciences) 4</td>
</tr>
<tr>
<td>PHY 2004 & 2004L</td>
<td>Applied Physics 1 and Laboratory for Applied Physics 1 (Critical Tracking: Gen Ed Biological Sciences and Physical Sciences) 4</td>
</tr>
<tr>
<td>STA 2023</td>
<td>Introduction to Statistics 1 (Gen Ed Mathematics) 3</td>
</tr>
<tr>
<td>FAS 2024</td>
<td>Sustainable Fisheries (Recommended elective) 3</td>
</tr>
</tbody>
</table>

Semester Five | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 3030C or SPC 2608</td>
<td>Effective Oral Communication or Introduction to Public Speaking 3</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
</tr>
<tr>
<td>FNR 3410C</td>
<td>Natural Resource Sampling 3</td>
</tr>
<tr>
<td>STA 3024</td>
<td>Introduction to Statistics 2</td>
</tr>
<tr>
<td>STA 4210</td>
<td>Regression Analysis</td>
</tr>
<tr>
<td>STA 4222</td>
<td>Sample Survey Design</td>
</tr>
<tr>
<td>CHM 2200 & 2200L</td>
<td>Fundamentals of Organic Chemistry and Fundamentals of Organic Chemistry Laboratory (recommended electives) 4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits 13
Approved Electives | 18 Credits Minimum

Students meet with a faculty advisor to establish a curriculum plan for approved electives and planned electives and may focus these toward a specific area or a minor. For a broader program, students should choose a minimum of three credits from each area of approved electives. Other options may include study abroad courses.

Ecology and Organismal Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS 2024</td>
<td>Sustainable Fisheries</td>
<td>3</td>
</tr>
<tr>
<td>FAS 4305C</td>
<td>Introduction to Fishery Science</td>
<td>3</td>
</tr>
<tr>
<td>FAS 4305C</td>
<td>Introduction to Fishery Science</td>
<td>3</td>
</tr>
<tr>
<td>FAS 4932</td>
<td>Topics in Fisheries and Aquatic Sciences (Aquatique Invertebrate Physiolgy)</td>
<td>3</td>
</tr>
<tr>
<td>FAS 4932</td>
<td>Topics in Fisheries and Aquatic Sciences (Field Ecology of Aquatic Organisms)</td>
<td>4</td>
</tr>
<tr>
<td>FAS 4932</td>
<td>Topics in Fisheries and Aquatic Sciences (Coral Reef Ecology)</td>
<td>3</td>
</tr>
<tr>
<td>FAS 4932</td>
<td>Topics in Fisheries and Aquatic Sciences (Invasion Ecology of Aquatic Animals)</td>
<td>3</td>
</tr>
<tr>
<td>PCB 4043C</td>
<td>General Ecology</td>
<td>4</td>
</tr>
<tr>
<td>PCB 4674</td>
<td>Evolution</td>
<td>4</td>
</tr>
<tr>
<td>VME 4012</td>
<td>Aquatic Animal Conservation Issues</td>
<td>3</td>
</tr>
<tr>
<td>VME 4906</td>
<td>Problems in Veterinary Science (Introduction to Marine Wildlife)</td>
<td>3</td>
</tr>
<tr>
<td>WIS 3553C</td>
<td>Introduction to Conservation Genetics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIS 4203C</td>
<td>Landscape Ecology and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>ZOO 4403C</td>
<td>Marine Biology</td>
<td>4</td>
</tr>
</tbody>
</table>

Economics and Human Dimensions

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEB 3450</td>
<td>Introduction to Natural Resource and Environmental Economics</td>
<td>3</td>
</tr>
<tr>
<td>FOR 3202</td>
<td>Society and Natural Resources (Gen Ed Social and Behavioral Sciences)</td>
<td>3</td>
</tr>
<tr>
<td>GEO 4300</td>
<td>Environmental Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>SYD 4510</td>
<td>Environment and Society</td>
<td>3</td>
</tr>
<tr>
<td>WIS 4523</td>
<td>Human Dimensions of Natural Resource Conservation</td>
<td>3</td>
</tr>
</tbody>
</table>

Physical/Chemical Oceanography

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 4932</td>
<td>Special Topics (Physical Oceanography)</td>
<td>3</td>
</tr>
<tr>
<td>GLY 3074</td>
<td>Oceans and Global Climate Change (Gen Ed Physical Sciences)</td>
<td>3</td>
</tr>
<tr>
<td>GLY 4734</td>
<td>Coastal Morphology and Processes</td>
<td>3</td>
</tr>
<tr>
<td>GLY 4930</td>
<td>Special Topics in Geology (Geochemical Oceanography)</td>
<td>3</td>
</tr>
<tr>
<td>OCE 3016</td>
<td>Introduction to Coastal and Oceanographic Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Professional Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS 3072C</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Open Water and Science Diving</td>
<td>Practicum or Internship</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative Ecological Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS 4932</td>
<td>Topics in Fisheries and Aquatic Sciences (Applied Fisheries Statistics)</td>
<td>4</td>
</tr>
<tr>
<td>FNR 3410C</td>
<td>Natural Resource Sampling</td>
<td>3</td>
</tr>
<tr>
<td>STA 3024</td>
<td>Introduction to Statistics 2</td>
<td>3</td>
</tr>
<tr>
<td>STA 4210</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STA 4211</td>
<td>Design of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>STA 4222</td>
<td>Sample Survey Design</td>
<td>3</td>
</tr>
<tr>
<td>WIS 4501</td>
<td>Introduction to Wildlife Population Ecology</td>
<td>3</td>
</tr>
<tr>
<td>WIS 4601C</td>
<td>Quantitative Wildlife Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Use as an approved elective if not used to meet the quantitative requirement in semester seven.

Additional Approved Electives | With instructor permission

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS 6337C</td>
<td>Fish Population Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>GLY 6075</td>
<td>Global Climate Change: Past, Present, and Future</td>
<td>4</td>
</tr>
<tr>
<td>OCP 6295</td>
<td>Estuarine and Shelf Hydrodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ZOO 6406</td>
<td>Biology of Sea Turtles</td>
<td>3</td>
</tr>
<tr>
<td>ZOO 6456C</td>
<td>Ichthyology</td>
<td>4</td>
</tr>
</tbody>
</table>

Academic Learning Compact

This major provides integrative understanding of the basic concepts, theories and observational findings related to marine materials and processes, geologic time, the diversity of marine life, the structure and
function of marine organisms and ecosystems and marine resource management.

The marine sciences major is administered jointly by the College of Agricultural and Life Sciences and the College of Liberal Arts and Sciences and utilizes faculty, courses and resources of the Fisheries and Aquatic Sciences Program (CALS), the Department of Geological Sciences (CLAS), the Department of Biology (CLAS), and the Department of Civil and Coastal Engineering (Herbert Wertheim College of Engineering).

Before Graduating Students Must

- Achieve a passing score on the subject test. The content of the examination has been reviewed and approved by the Marine Sciences Committee.
- Achieve a passing score on the analytical skills test. The content of the examination has been reviewed and approved by the Marine Sciences Committee.
- Achieve a passing score on the bioethics quiz. The content of the examination has been reviewed and approved by the Marine Sciences Committee.
- Achieve a passing score on the scientific literacy paper. This paper is assessed using a rubric that has been reviewed and approved by the Marine Sciences Committee.
- Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content
1. Demonstrate competence in the basic terminology, concepts, methodologies and theories used within the marine sciences.

Critical Thinking
2. Analyze information in the marine sciences and develop reasoned solutions to problems using the processes and applications of scientific inquiry.
3. Discriminate ethical behavior from unethical behavior in scientific research.

Communication
4. Communicate knowledge, ideas and reasoning clearly, effectively and objectively in written or oral forms appropriate to the marine sciences.

Curriculum Map

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS 4202C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>FAS 4932</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>GLY 3083C</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>OCE 1001</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>ZOO 4205C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Assessment Types
- Marine sciences subject and analytical skills tests
- Bioethics quiz
- Scientific paper