The Bachelor of Science in Sustainability and the Built Environment (BSSBE) enables students to explore creative solutions for the planning, design and construction of human structures and settlements.

About this Program
- **College:** Design, Construction and Planning
- **Degree:** Bachelor of Science in Sustainability and the Built Environment
- **Credits for Degree:** 120
- **Specializations:** Interdisciplinary | Geodesign
- **Additional Information**
 - **Contact:** Email
- **Related Sustainability and the Built Environment Programs**

To graduate with this major, students must complete all university, college, and major requirements. Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites may be used for transfer students.

Semester 1
- Complete **BCN 1582** with minimum grade of C+
- Complete **DCP 1010, DCP 1003, and LAA 2330** with minimum grades of C
- Complete **MAC 1147** or (MAC 1140 and MAC 1114)
- 2.00 UF GPA required

Semester 2
- Complete one history of a built environment course:
 - **ARC 1701** Architectural History 1 (**Critical Tracking**: Gen Ed Humanities and International)
 - **ARC 1720** Survey of Architecture History (**Critical Tracking**: Gen Ed Humanities and International)
- Complete **BCN 3012** History of Construction (**Critical Tracking**: Gen Ed Humanities and International)
- Complete **IND 2100** History of Interior Design 1 (**Critical Tracking**: Gen Ed Humanities)
- Complete **IND 2130** History of Interior Design 2 (**Critical Tracking**: Gen Ed Humanities)
- Complete **LAA 2710** History of Landscape Architecture (**Critical Tracking**: Gen Ed Humanities and International)
- Complete **URP 4000** Preview of Urban and Regional Planning (**Critical Tracking**: Gen Ed Humanities)
- Complete **DCP 1241** Introduction to Spatial Thinking (**Critical Tracking**: Gen Ed Humanities)
- Complete **ECO 2023** Principles of Microeconomics (**Critical Tracking**: Gen Ed Social and Behavioral Sciences)
- Complete **ENC 1101** Expository and Argumentative Writing (Gen Ed Composition)
- Complete **Select one:**
 - **MAC 1147** Precalculus Algebra and Trigonometry (**Critical Tracking**: State Core Gen Ed Mathematics)
 - **MAC 1140** Precalculus Algebra (**Critical Tracking**: Gen Ed Mathematics)
- 14-15 Credits

Semester 3
- Complete **DCP 2001** with minimum grade of C
- Complete **DCP 2002** with minimum grade of C
- Complete **STA 2023**
- 2.75 UF GPA required

Semester 4
- Complete **DCP 3210** with minimum grades of C+
- Complete one: AEB 4126, REL 2104, or REL 3492 with minimum grade of C
- Complete **GEO 3162C** with minimum grade of C
- 3.0 UF GPA required

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student's academic record and scheduling availability of courses. Prerequisites still apply.

Students will not be required to take more credit hours than required in semesters with less than 3 credit hours in electives. DCP advisors have a list of 1 and 2 credit hour electives in which students may enroll.
GEO 2200 Physical Geography (Gen Ed Physical Sciences) 3
STA 2023 Introduction to Statistics 1 (Critical Tracking, Gen Ed Mathematics) 3
Elective (1000/2000 level) 2

Semester Four

DCP 2002 Introduction to GIS II 3
ENC 3254 Professional Writing in the Discipline (State Core Gen Ed Composition) 3
IDS 4930 Special Topics in Interdisciplinary Studies (Gen Ed Physical Science) 3

State Core Gen Ed Biological or Physical Sciences 3
State Core Gen Ed Humanities 3

Credits 15

Semester Five

DCP 3210 Sustainable Solutions for the Built Environment (Critical Tracking) 3
Select one ethics and environmental justice course: 3
AEB 4126 Agricultural and Natural Resource Ethics (Critical Tracking) 3
REL 2104 Environmental Ethics (Critical Tracking) 3
REL 3492 Religion Ethics and Nature (Critical Tracking) 3
GEO 3162C Introduction to Quantitative Analysis for Geographers 4

Select one resource economics course: 3
AEB 2451 Economics of Resource Use (Critical Tracking) 3
AEB 3450 Introduction to Natural Resource and Environmental Economics (Critical Tracking) 3
AEB 4283 International Development Policy (Critical Tracking) 3
FOR 4664 Sustainable Ecotourism Development (Critical Tracking) 3
GEO 2500 Global and Regional Economies (Critical Tracking) 3
URP 4XXX Automation for Geospatial Modeling and Analysis 3

Credits 15

Semester Six

DCP 3220 Social and Cultural Sustainability and the Built Environment 3
Select one ecology for the built environment course: 3
EES 4316 Industrial Ecology 3
FOR 4090C Urban Forestry 3
SWS 2007 The World of Water 3
SWS 2008 Land and Life 3
WIS 4203C Landscape Ecology and Conservation 3
WIS 4427C Wildlife Habitat Management 3
WIS 4523 Human Dimensions of Natural Resource Conservation 3
URP 4230 3D Modeling, Visualization, and Simulation 3

Approved electives 6

Credits 15

Semester Seven

DCP 3200 Methods of Inquiry for Sustainability and the Built Environment 3
DCP 4945 Geodesign Practicum I 6

Approved elective 3
Elective (3000/4000 level) 3

Credits 15

Semester Eight

DCP 4290 Capstone Project in Sustainability and the Built Environment 6

Approved electives 6
Elective (3000/4000 level) 3

Credits 15

Total Credits 120

Approved Electives

Any 3000/4000-level course in the College of DCP not otherwise required.

Additional courses that also fulfill this requirement:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEB 2451</td>
<td>Economics of Resource Use (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>AEB 4126</td>
<td>Agricultural and Natural Resource Ethics (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>AEB 4283</td>
<td>International Development Policy (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>IND 2214</td>
<td>Introduction to Architectural Interiors</td>
<td>4</td>
</tr>
<tr>
<td>LAA 2360C</td>
<td>Principles of Landscape Architecture</td>
<td>5</td>
</tr>
<tr>
<td>SWS 2008</td>
<td>The World of Water</td>
<td>3</td>
</tr>
<tr>
<td>WIS 4203C</td>
<td>Landscape Ecology and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>WIS 4523</td>
<td>Human Dimensions of Natural Resource Conservation</td>
<td>3</td>
</tr>
</tbody>
</table>

The Bachelor of Science in Sustainability and the Built Environment requires students to demonstrate an understanding of the relationship between the goals of sustainability and the activities of the built environment disciplines, including architecture, building construction, historic preservation, interior design, landscape architecture and urban and regional planning.

Before Graduating Students Must

- Complete a capstone or independent research project, present your results to a committee of the program’s faculty and receive acceptable assessment.
- Complete requirements for the baccalaureate degree, as determined by faculty.
Students in the Major Will Learn to
Student Learning Outcomes (SLOs)

Content
1. Explain sustainability principles.
2. Integrate knowledge and principles from sustainability-related disciplines.
3. Describe the role of the built environment in sustainability.
4. Combine information from multiple sources to solve problems.

Critical Thinking
5. Frame sustainable problems and potential solutions within a global context.
6. Collect and analyze data to solve problems.
7. Produce sustainable solutions for problems of the built environment.
8. Integrate multiple disciplinary, cultural and stakeholder perspectives for sustainable problem solving.

Communication
9. Produce an effective oral presentation.
10. Produce effective written communications.
11. Integrate a variety of visual techniques to enhance the communication of ideas and solutions.
12. Solve a built environment sustainability problem in a multidisciplinary team.

Curriculum Map

<table>
<thead>
<tr>
<th>Course</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
<th>SLO 5</th>
<th>SLO 6</th>
<th>SLO 7</th>
<th>SLO 8</th>
<th>SLO 9</th>
<th>SLO 10</th>
<th>SLO 11</th>
<th>SLO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCP 3200</td>
<td></td>
<td></td>
<td></td>
<td>I, R</td>
<td>I, R</td>
<td>I, R</td>
<td>I, R</td>
<td>I, R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 3210</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I, R</td>
<td></td>
</tr>
<tr>
<td>DCP 3220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>DCP 4290</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DCP 4910</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DCP 4941</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>DCP 4942</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Apprc</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Elect</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Ecology</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>for the</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Built</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>(one course)</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

Assessment Types
- Capstone evaluation
- Final project evaluation

1 Student chooses from courses listed in semesters 5-7 of the major’s semester plan.