The Bachelor of Science in Sustainability and the Built Environment (BSSBE) enables students to explore creative solutions for the planning, design and construction of human structures and settlements.

About this Program

- **College**: Design, Construction and Planning
- **Degree**: Bachelor of Science in Sustainability and the Built Environment
- **Specializations**: Interdisciplinary, Geodesign
- **Credits for Degree**: 120
- **Contact**: Email (advising@dcp.ufl.edu?Subject=Sustainability%20and%20the%20Built%20Environment%20Major)

To graduate with this major, students must complete all university, college, and major requirements.

Department Information

The Sustainability and the Built Environment (SBE) Program at the College of Design, Construction and Planning teaches hands-on sustainability by using the university as a learning laboratory.

Website (https://dcp.ufl.edu/sustainability/)

CONTACT

Email (barmagh@ufl.edu) | 352.294.1428

ARCHITECTURE BUILDING
GAINESVILLE FL 32611-5701
Map (http://campusmap.ufl.edu/#/index/0268)

Curriculum

- Sustainability and the Built Environment
- Sustainability and the Built Environment Minor

Whether it is the redesign and rehabilitation of existing structures or innovative new design, students will be provided a theoretical foundation for seeking sustainable solutions to problems in the built environment. The degree program is supported by the globally recognized expertise in sustainability of the faculty in the College of Design, Construction and Planning and from across campus.

Graduates will have excellent opportunities for work in various green industries, for government agencies involved with regulation and management of the built environment and with nonprofit organizations promoting the principles of sustainability. Additionally students will be prepared to enter graduate school in architecture, building construction, historic preservation, interior design, landscape architecture and urban and regional planning.

Transfer students for either specialization must complete the A.A. degree, MAC 1147 or (MAC 1140 and MAC 1114), STA 2023, and ECO 2013 and ECO 2023 with minimum grades of C. Students must also have a 3.0 minimum overall GPA. Refer to the admissions website for transfer admission information, application deadlines and the online application.

Certain highly qualified students may have the option of pursuing a 4+1 or a 4+2 degree in urban and regional planning, landscape architecture or building construction.

Field trips to broaden and expand students’ educational experiences through study of planning, design, construction, and sustainability projects are required and will be paid for by students.

Geodesign

The geodesign specialization is for students interested in the application of geographic information systems in the sustainable design of the built environment.

Interdisciplinary

The interdisciplinary specialization is for students who want a general degree that emphasizes the importance of sustainability for all of the built environment fields.

Coursework for the Major

All students, regardless of specialization, are required to take 53 hours of core courses to develop knowledge of the fundamental concepts for sustainability and the built environment.
Students should meet with an advisor as early as possible in their academic careers to choose their specialization and to plan their course of study.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCN 1582</td>
<td>International Sustainable Development</td>
<td>3</td>
</tr>
<tr>
<td>IDS 2935</td>
<td>Special Topics (Facets of Sustainability)</td>
<td></td>
</tr>
<tr>
<td>ECO 2023</td>
<td>Principles of Microeconomics</td>
<td>4</td>
</tr>
<tr>
<td>ECO 2013</td>
<td>Principles of Macroeconomics</td>
<td>4</td>
</tr>
<tr>
<td>A history course in architecture, construction management, interior design, landscape architecture, or urban and regional planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAA 1330</td>
<td>Site Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STA 2023</td>
<td>Introduction to Statistics 1</td>
<td>3</td>
</tr>
<tr>
<td>DCP 3210</td>
<td>Sustainable Solutions for the Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>DCP 3220</td>
<td>Social and Cultural Sustainability and the Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>DCP 3200</td>
<td>Methods of Inquiry for Sustainability and the Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>DCP 4941</td>
<td>Practicum in Sustainability and the Built Environment</td>
<td>6</td>
</tr>
<tr>
<td>or DCP 4942</td>
<td>Field Experience in Sustainability and the Built Environment</td>
<td></td>
</tr>
<tr>
<td>DCP 4290</td>
<td>Capstone Project in Sustainability and the Built Environment</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits: 38

Academic Learning Compact

The Bachelor of Science in Sustainability and the Built Environment requires students to demonstrate an understanding of the relationship between the goals of sustainability and the activities of the built environment disciplines, including architecture, building construction, historic preservation, interior design, landscape architecture and urban and regional planning.

Before Graduating Students Must

- Complete a capstone or independent research project, present your results to a committee of the program's faculty and receive acceptable assessment.
- Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content
1. Explain sustainability principles.
2. Integrate knowledge and principles from sustainability-related disciplines.
3. Describe the role of the built environment in sustainability.
4. Combine information from multiple sources to solve problems.

Critical Thinking
5. Frame sustainable problems and potential solutions within a global context.
6. Collect and analyze data to solve problems.
7. Produce sustainable solutions for problems of the built environment.
8. Integrate multiple disciplinary, cultural and stakeholder perspectives for sustainable problem solving.

Communication
9. Produce an effective oral presentation.
10. Produce effective written communications.
11. Integrate a variety of visual techniques to enhance the communication of ideas and solutions.
12. Solve a built environment sustainability problem in a multidisciplinary team.

Curriculum Map

I = Introduced; R = Reinforced; A = Assessed
Courses and SLOs

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
<th>SLO 5</th>
<th>SLO 6</th>
<th>SLO 7</th>
<th>SLO 8</th>
<th>SLO 9</th>
<th>SLO 10</th>
<th>SLO 11</th>
<th>SLO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCP 3200</td>
<td>I, R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 3210</td>
<td>I</td>
<td>I, R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 3220</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>I, R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>I, R</td>
<td>A</td>
</tr>
<tr>
<td>DCP 4290</td>
<td>A</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DCP 4910</td>
<td>A</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DCP 4941</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 4942</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved Electives

- **Ecology for the Built Environment** (one course)
 - I, R
- **Energy and/or Climate Change** (one course)
 - I, R
- **Ethics and Environmental Justice** (one course)
 - I, R
- **Resource Economics** (one course)
 - I, R

1. Student chooses from courses listed in semesters 5-7 of the major’s semester plan.

Assessment Types

- Capstone evaluation
- Final project evaluation