COMPUTER SCIENCE | HERBERT WERTHEIM COLLEGE OF ENGINEERING

The computer science program combines a strong engineering-oriented technical basis with a flexible interdisciplinary component and an emphasis on communication skills. This flexibility will be increasingly important in the future as computers become more important tools in an ever-increasing number of disciplines.

About this Program

- **College**: Herbert Wertheim College of Engineering
- **Degree**: Bachelor of Science in Computer Science
- **Credits for Degree**: 120
- **Additional Information**
- **Related Computer Science Programs**

To graduate with this major, students must complete all university, college, and major requirements.

Critical Tracking records each student’s progress in courses that are required for entry to each major. Please note the critical-tracking requirements below on a per-semester basis.

Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites may be used for transfer students.

Semester 1

- Complete 1 of 7 critical-tracking courses with a minimum grade of C within two attempts: CHM 2045 or CHM 2095, MAC 2311, MAC 2312, MAC 2313, COP 3502, PHY 2048, PHY 2049
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 2

- Complete 1 additional critical-tracking course with a minimum grade of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 3

- Complete 2 additional critical-tracking courses with minimum grades of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 4

- Complete 2 additional critical-tracking courses with minimum grades of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 5

- Complete all 7 critical-tracking courses with minimum grades of C in each course within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Students are expected to complete the general education international (GE-N) and diversity (GE-D) requirements. This is often done concurrently with another general education requirement (typically, GE-C, H or S).

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student’s academic record and scheduling availability of courses. Prerequisites still apply.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 2045</td>
<td>General Chemistry 1 (Critical Tracking; Gen Ed Physical Sciences)</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2095</td>
<td>Chemistry for Engineers 1 (Critical Tracking; Gen Ed Physical Sciences)</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045L</td>
<td>General Chemistry 1 Laboratory (Gen Ed Physical Sciences)</td>
<td>1</td>
</tr>
<tr>
<td>COP 3502</td>
<td>Programming Fundamentals 1 (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>ENC 1101</td>
<td>Expository and Argumentative Writing (State Core Gen Ed Composition; Writing Requirement: 6,000 words)</td>
<td>3</td>
</tr>
<tr>
<td>IUF 1000</td>
<td>What is the Good Life (Gen Ed Humanities)</td>
<td>3</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>Analytic Geometry and Calculus 1 (Critical Tracking; State Core Gen Ed Mathematics)</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Two

COP 3503	Programming Fundamentals 2	3
COT 3100	Applications of Discrete Structures	3
MAC 2312	Analytic Geometry and Calculus 2 (Critical Tracking; Gen Ed Mathematics)	4
PHY 2048	Physics with Calculus 1 (Critical Tracking; State Core Gen Ed Physical Sciences)	3
PHY 2048L	Laboratory for Physics with Calculus 1 (Gen Ed Physical Sciences)	1

Semester Three

COP 3530	Data Structures and Algorithm	4
MAC 2313	Analytic Geometry and Calculus 3 (Critical Tracking; Gen Ed Mathematics)	4
PHY 2049	Physics with Calculus 2 (Critical Tracking; Gen Ed Physical Sciences)	3
PHY 2049L	Laboratory for Physics with Calculus 2 (Gen Ed Physical Sciences)	1
State Core Gen Ed Social and Behavioral Sciences		3

Semester Four

| CEN 3031 | Introduction to Software Engineering | 3 |
| ENC 3246 | Professional Communication for Engineers (Gen Ed Composition; Writing Requirement: 6,000 words) | 3 |
MAS 3114 or MAS 4105
Computational Linear Algebra or Linear Algebra 1
Gen Ed Social and Behavioral Sciences with Diversity or International
Semester Five
CDA 3101
Introduction to Computer Organization
CIS 4301
Information and Database Systems 1
COT 4501
Numerical Analysis: a Computational Approach
State Core Gen Ed Humanities with Diversity or International
Interdisciplinary elective
Credits
Semester Six
COP 4600
Operating Systems
EEL 3701C
Digital Logic and Computer Systems
ENC 1102
Argument and Persuasion (Gen Ed Composition; Writing Requirement: 6,000 words)
EGN 4034
Technical electives
Credits
Summer After Semester Six
Internship / Co-op (if desired)
Credits
Semester Seven
CNT 4007C
Computer Network Fundamentals
Technical electives
Interdisciplinary electives
Credits
Semester Eight
CIS 4913C or CIS 4914
Integrated Product and Process Design 2 (4EG) or Senior Project
STA 3032
Engineering Statistics
Technical elective
Interdisciplinary electives
Credits
Total Credits

The Herbert Wertheim College of Engineering's computer science program combines a strong engineering technical basis with a flexible interdisciplinary component and strong communication skills. This program emphasizes the technical aspects of computer science and is less flexible than the computer science program in the College of Liberal Arts and Sciences.

Before Graduating Students Must

- Pass assessment according to department rubric of student performance on a major design experience.
- Pass assessment in one or more core courses of individual assignments targeted to each SLO.
- Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content
1. Apply knowledge of mathematics and science to computer science problems.

2. Design and conduct computer-science experiments, analyzing and interpreting the data.

Critical Thinking
3. Design a computer science system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability constraints.

Communication
4. Communicate technical data and design information effectively in writing and in speech to other computer scientists and engineers.

Assessment Types

- Assignments
- Exams
- Reports
- Exit survey