MECHANICAL ENGINEERING

Mechanical Engineering is concerned with motion and the processes whereby other energy forms are converted into motion. Mechanical engineers are responsible for conceiving, designing, manufacturing, testing, and marketing devices and systems that alter, transfer, transform, and utilize the energy forms that cause motion.

About this Program

- **College**: Herbert Wertheim College of Engineering
- **Degree**: Bachelor of Science in Mechanical Engineering
- **Credits for Degree**: 128

To graduate with this major, students must complete all university, college, and major requirements.

Department Information

The Department of Mechanical and Aerospace Engineering (MAE) is the largest academic program on campus by student enrollment. The Mechanical Engineering program celebrated its 100 year anniversary in 2009 and is one of the founding departments of the Herbert Wertheim College of Engineering. More than a decade after the successful merger of the mechanical and aerospace programs, MAE remains a vibrant and intellectually diverse program at both the undergraduate and graduate level.

Website (https://mae.ufl.edu)

CONTACT

352.392.0961 (tel) | 352.392.7303 (fax)
P.O. Box 116250
571 Gale Lemerand Drive
MECHANICAL & AEROSPACE ENGINEERING C
GAINESVILLE FL 32611-6250
Map (http://campusmap.ufl.edu/#/index/0183)

Curriculum

- Aerospace Engineering
- Biomechanics Minor
- Combination Degrees
- Mechanical Engineering

Related Programs

Dual Degree in Mechanical Engineering and Aerospace Engineering

The baccalaureate program in mechanical engineering is fully accredited and provides a broad education with a strong foundation in mathematics, science and basic engineering sciences. Advanced courses are available to develop specialized interests in the engineering aspects of manufacturing, robotics, solid mechanics, thermal and fluid systems, dynamics and controls, and biomechanics. Graduates are prepared to work in a variety of industries or to pursue graduate study.

Students considering a career in biomedical engineering should be aware that graduate education is often required. The Herbert Wertheim College of Engineering offers M.S. and Ph.D. degrees in biomedical engineering.

Combination Bachelor’s/Master’s Degree Program

The mechanical engineering professional often benefits from an advanced degree to meet the challenging needs of industry and government. Accordingly, the Department of Mechanical and Aerospace Engineering actively participates in the combination B.S./M.S. degree program that allows students to double-count graduate courses toward both degrees. The combination-degree program reduces the cost for both degrees and enhances the student's marketability for career advancement. Interested students should contact the MAE department or its website for more information.

Department Requirements

Minimum grades of C are required for the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM 2511</td>
<td>Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3344</td>
<td>Introduction to Numerical Methods of Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3401</td>
<td>Engineering Mechanics: Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3520</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EML 3100</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

The minimum C grade is part of the prerequisite requirement for courses listing EGM 2511, EGM 3344, EGM 3401, EGM 3520, or EML 3100 as a prerequisite. The prerequisite course and subsequent course cannot be taken in the same term, even if the prerequisite is being repeated.

An aerospace or mechanical engineering student whose cumulative, upper-division or department grade point average falls below a 2.0 or who does not meet critical tracking requirements will be placed on academic probation and required to complete a probation contract with an MAE academic advisor. Students normally are allowed a maximum of two terms (consecutive or non-consecutive) on academic probation. Students who do not satisfy the conditions of the first term on probation may be dismissed from the department.

All graduating seniors must complete an exit interview with their advisor before graduating.

Dual-Degree Programs

There is much overlap between the aerospace engineering and mechanical engineering curriculum. The first six semesters are identical for both programs. Through proper selection of electives, students can earn a dual mechanical engineering/aerospace engineering degree with one semester of additional work. Contact the Department of Mechanical and Aerospace Engineering or visit the website for more information.

Educational Objectives

The objective of the mechanical engineering program at UF is to prepare students to attain the following goals within a few years of graduation:

- Graduates will meet the expectations of employers of mechanical engineers.
- Qualified graduates will pursue advanced study if they so desire.

Mission

The mission of the undergraduate program is to serve the state of Florida, the United States and the engineering profession by providing quality educational programs in mechanical engineering; conduct a
nationally recognized research program; and foster ongoing professional
development of students and faculty.

Research Programs
The department’s active research programs are sponsored by private
industry, the National Science Foundation, Department of Defense, NASA,
National Institutes of Health and other agencies.

These programs keep faculty at the leading edge of technology and
provide opportunities for students to participate in research through
classroom assignments, individual studies, undergraduate research
scholarships and employment as research assistants.

Critical Tracking
Critical Tracking records each student’s progress in courses that are
required for progress toward each major. Please note the critical-tracking
requirements below on a per-semester basis.

Equivalent critical-tracking courses as determined by the State of
Florida Common Course Prerequisites (http://www.flvc.org/cpp/
displayRecord.jsp?cip=141901&track=01) may be used for transfer
students.

Semester 1
• Complete 1 of 8 critical-tracking courses with a minimum grade of C
 within two attempts: CHM 2045 or CHM 2095, EML 2023, MAC 2311,
 MAC 2312, MAC 2313, MAP 2302, PHY 2048, PHY 2049
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester 2
• Complete 1 additional critical-tracking course with a minimum grade
 of C within two attempts
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester 3
• Complete 2 additional critical-tracking courses with minimum grades
 of C within two attempts
• Complete EGM 2511 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester 4
• Complete 2 additional critical-tracking courses with minimum grades
 of C within two attempts
• Complete EGM 3344, EGM 3520, and EML 3100 with minimum grades
 of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester 5
• Complete all critical-tracking courses with minimum grades of C in
 each course within two attempts
• Complete EGM 3401 with minimum grade of C
• Complete EGN 3353C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

SEMESTER 6
• Complete 4 of the remaining EML 3XXX/4XXX required courses

SEMESTER 7
• Complete 3 of the remaining EML 3XXX/4XXX required courses

SEMESTER 8
• Complete all remaining EML 3XXX/4XXX required courses

Model Semester Plan
To remain on track, students must complete the appropriate critical-
tracking courses, which appear in bold. These courses must be
completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major.
Actual courses and course order may be different depending on the student’s
academic record and scheduling availability of courses. Prerequisites still
apply.

Course	Title	Credits
CHM 2045 | General Chemistry 1 (Critical Tracking; Gen Ed Physical Sciences) | 3
CHM 2095 | Chemistry for Engineers 1 (Critical Tracking; Gen Ed Physical Sciences) | 3
CHM 2045L | General Chemistry 1 Laboratory (Gen Ed Physical Sciences) | 1
EML 2920 | Department and Professional Orientation (Critical Tracking) | 1
MAC 2311 | Analytic Geometry and Calculus 1 (Critical Tracking; State Core Gen Ed Mathematics) | 4

Semester Two
• Complete EML 2023 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Three
• Complete COP 2271 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Four
• Complete ENC 3246 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Five
• Complete ENC 3246 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Six
• Complete ENC 3246 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Seven
• Complete ENC 3246 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required

Semester Eight
• Complete ENC 3246 with minimum grade of C
• 2.8 GPA required for all critical-tracking courses
• 2.0 UF GPA required
Semester Four

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM 3344</td>
<td>Introduction to Numerical Methods of Engineering Analysis (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3520</td>
<td>Mechanics of Materials (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EMA 3010</td>
<td>Materials</td>
<td>3</td>
</tr>
<tr>
<td>EML 3100</td>
<td>Thermodynamics (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>Elementary Differential Equations (Critical Tracking)</td>
<td>3</td>
</tr>
</tbody>
</table>

State Core Gen Ed Humanities (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#genedcoursestext)²

Credits: 18

Semester Five

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 3003</td>
<td>Elements of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3401</td>
<td>Engineering Mechanics: Dynamics (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EGN 3353C</td>
<td>Fluid Mechanics (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EML 3301C</td>
<td>Mechanics of Materials Laboratory (Writing Requirement: 6,000 words)</td>
<td>3</td>
</tr>
</tbody>
</table>

Gen Ed Social and Behavioral Sciences²

Credits: 15

Semester Six

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EML 3005</td>
<td>Mechanical Engineering Design 1 (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EML 4140</td>
<td>Heat Transfer (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EML 4220</td>
<td>Vibrations (Critical Tracking)</td>
<td>3</td>
</tr>
<tr>
<td>EML 4312</td>
<td>Control of Mechanical Engineering Systems (Critical Tracking)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one:

- Gen Ed Humanities; Writing Requirement: 6,000 words²
- Gen Ed Social and Behavioral Sciences; Writing Requirement: 6,000 words²

Credits: 15

Semester Seven

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EML 4147C</td>
<td>Thermal Sciences Design and Laboratory (Critical Tracking)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one:

- EML 4501 Mechanical Engineering Design 2 (Critical Tracking) | 3 |
- EAS 4700 Aerospace Design 1 | 1 |
- EAS 4710 Aerospace Design 2 (can substitute if dual ME/ASE student) | 1 |
- EML 4507 Finite Element Analysis and Design (Critical Tracking) | 3 |

Technical electives

Credits: 15

Approved Electives

Science Elective

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST 3018</td>
<td>Astronomy and Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>BSC 2010</td>
<td>Integrated Principles of Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHM 2046</td>
<td>General Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CHM 2096</td>
<td>Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PHY 3101</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Academic Learning Compact

Mechanical engineers are responsible for creating and manufacturing devices and systems that alter, transfer, transform and utilize energy forms that cause motion. The baccalaureate program provides a broad education with a strong foundation in mathematics, science and basic engineering sciences. Advanced courses develop specialized engineering skills in manufacturing, robotics, solid mechanics, thermal and fluid systems, dynamics and controls, and biomechanics.

Before Graduating Students Must

- Pass an assessment by two or more faculty and/or industry practitioners of performance on a major design experience.
- Pass assessment in two courses of individual assignments targeted to each learning outcome. Assessment will be provided by the instructor of the course according to department standards.
- Complete an exit interview in your final semester.
- Complete requirements for the baccalaureate degree, as determined by faculty.
Students in the Major Will Learn to
Student Learning Outcomes (SLOs)

Content
1. Apply knowledge of mathematics, science and engineering principles to mechanical engineering problems.
2. Design and conduct mechanical engineering experiments and analyze and interpret the data.

Critical Thinking
3. Design a mechanical engineering system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability constraints.

Communication
4. Communicate technical data and design information effectively in speech and in writing to other mechanical engineers.

Curriculum Map

I = Introduced; R = Reinforced; A = Assessed

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM 2511</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGM 3344</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGM 3401</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGM 3520</td>
<td>A</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGM 4313</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGN 3353C</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EML 2023</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EML 2322L</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>EML 2920</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EML 3005</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EML 3100</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EML 3301C</td>
<td>R</td>
<td>I, A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>EML 4140</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EML 4147C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>EML 4220</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EML 4304C</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>EML 4312</td>
<td>A</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EML 4314C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>EML 4321</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EML 4500</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EML 4501</td>
<td>R</td>
<td>A</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>ENC 3254</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

Assessment Types
- Written exams
- Laboratory and oral reports
- Design project
- Additional assessments include:
 - Exit interview
 - Alumni survey