NUCLEAR AND RADIOLOGICAL SCIENCES | PRE-MEDICAL

This degree emphasizes the nuclear sciences rather than nuclear engineering. Students pursue a pre-medical specialization or a pre-medical physics specialization. Any student pursuing this degree must have a selected program, including option area electives, approved in advance by an advisor.

About this Program

- **College**: Herbert Wertheim College of Engineering
- **Degree**: Bachelor of Science
- **Specializations**: Pre-Medical | Pre-Medical Physics
- **Credits for Degree**: 125
- **Additional Information**

To graduate with this major, students must complete all university, college, and major requirements.

*Note that critical tracking is the same for both specializations.*

Critical Tracking records each student’s progress in courses that are required for entry to each major. Please note the critical-tracking requirements below on a per-semester basis.

Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites may be used for transfer students.

### Semester 1

- Complete 1 of 8 critical-tracking courses with a minimum grade of C within two attempts: BSC 2010, CHM 2045 or CHM 2095, MAC 2311, MAC 2312, MAC 2313, MAP 2302, PHY 2048, PHY 2049
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

### Semester 2

- Complete 1 additional critical-tracking course with a minimum grade of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

### Semester 3

- Complete 2 additional critical-tracking courses with minimum grades of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

### Semester 4

- Complete 2 additional critical-tracking courses with minimum grades of C within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

### Semester 5

- Complete all 8 critical-tracking courses with minimum grades of C in each course within two attempts
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Students are required to complete IUF 1000 (GE-H) in semester 1 or 2. Students are also expected to complete the general education international (GE-N) and diversity (GE-D) requirements. This is often done concurrently with another general education requirement (typically, GE-C, H or S).

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student’s academic record and scheduling availability of courses. Prerequisites still apply.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSC 2010</td>
<td>Integrated Principles of Biology 1</td>
<td>3</td>
</tr>
<tr>
<td>BSC 2010L</td>
<td>Integrated Principles of Biology Laboratory 1</td>
<td>1</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHM 2045</td>
<td>General Chemistry 1</td>
<td></td>
</tr>
<tr>
<td>CHM 2095</td>
<td>Chemistry for Engineers 1</td>
<td></td>
</tr>
<tr>
<td>CHM 2045L</td>
<td>General Chemistry 2 Laboratory 1</td>
<td></td>
</tr>
<tr>
<td>MAC 2311</td>
<td>Analytic Geometry and Calculus 1</td>
<td>4</td>
</tr>
<tr>
<td>State Core Gen Ed Composition; Writing Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

| Semester Two | | |
| BSC 2011 & 2011L | Integrated Principles of Biology 2 and Integrated Principles of Biology Laboratory 2 | 4 |
| Select one: | | 3 |
| CHM 2046 | General Chemistry 2 | |
| CHM 2096 | Chemistry for Engineers 2 | |
| CHM 2046L | General Chemistry 2 Laboratory | 1 |
| IUF 1000 | What is the Good Life | 3 |
| MAC 2312 | Analytic Geometry and Calculus 2 | 4 |
| | Credits | 15 |

| Semester Three | | |
| ENC 3246 | Professional Communication for Engineers | 3 |
| | | |
| State Core Gen Ed Humanities | | 3 |
| | Credits | 6 |

| Semester Four | | |
| CHM 2210 | Organic Chemistry 1 | 3 |
| MAC 2313 | Analytic Geometry and Calculus 3 | 4 |
| PHY 2048 | Physics with Calculus 1 | 3 |
PHY 2048L Laboratory for Physics with Calculus 1 (Gen Ed Physical Sciences) 1
State Core Gen Ed Social and Behavioral Sciences 3

Semester Five

PHY 2049 Physics with Calculus 2 (Critical Tracking) 3
PHY 2049L Laboratory for Physics with Calculus 2 1

Credits 14

Semester Six

APK 2100C Applied Human Anatomy with Laboratory 4
EEL 3003 Elements of Electrical Engineering 3
EGS 4034 Professional Ethics 1
PHY 3101 Introduction to Modern Physics 3
Select one: 3
Gen Ed Social and Behavioral Sciences
Gen Ed Humanities

Credits 13

Semester Seven

APK 2105C Applied Human Physiology with Laboratory 4
ENU 4145 Risk Assessment for Radiation Systems 1 3
ENU 4612 Nuclear Radiation Detection and Instrumentation 3
ENU 4612L Nuclear Radiation Detection and Instrumentation Laboratory 1
ENU 4630 Fundamental Aspects of Radiation Shielding 1
Engineering elective 3

Credits 14

Semester Eight

STA 3032 Engineering Statistics 3
Gen Ed Social and Behavioral Sciences 3

Credits 6

Semester Nine

APK 2105C Applied Human Physiology with Laboratory 4
ENU 4612 Nuclear Radiation Detection and Instrumentation 3
ENU 4612L Nuclear Radiation Detection and Instrumentation Laboratory 1
ENU 4630 Fundamental Aspects of Radiation Shielding 1
Engineering elective 3

Credits 14

Semester Ten

ENU 4145 Risk Assessment for Radiation Systems 1 3
ENU 4641C Applied Radiation Protection 1 2
Engineering elective 3
Pre-med electives 6

Credits 14

Total Credits 125

1 All nuclear engineering and nuclear engineering sciences majors must pass all required undergraduate department courses with an overall C average.

Engineering Electives

All technical engineering electives must be approved by a department advisor. At least five credits of technical engineering electives must be ENU courses. Examples include courses in nuclear engineering, engineering materials, thermodynamics, statics, dynamics, and advanced programming.

Examples of Pre-Medical Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB 3063</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>or AGR 3303</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>PCB 4723C</td>
<td>Physiology and Molecular Biology of Animals</td>
<td>5</td>
</tr>
<tr>
<td>PCB 5235</td>
<td>Immunology</td>
<td>3</td>
</tr>
</tbody>
</table>

The major in nuclear and radiological sciences educates students to work professionally in areas related to the control and safe utilization of nuclear energy, radiation and radioactivity.

Before Graduating Students Must

- Pass an assessment by two or more faculty and/or industry practitioners of performance on a major design experience.
- Pass assessment in two or more courses of individual assignments targeted to each learning outcome. Assessment will be provided by the instructor of the course according to department standards.
- Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content

1. Apply knowledge of mathematics, science and engineering for problem solving in engineering.
2. Analyze and interpret experimental data.

Critical Thinking

3. Develop an engineering design to meet specific technical requirements within realistic constraints such as economic, environmental, health and safety and reliability.
4. Foster the need for lifelong learning and the ability to adapt this to engineering practice.

Communication

5. Function effectively on multidisciplinary skills teams.
6. Communicate effectively, using both oral and written presentations, in engineering practice.

Curriculum Map

I = Introduced; R = Reinforced; A = Assessed

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
<th>SLO 5</th>
<th>SLO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENU 4001 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENU 4145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENU 4605 R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>I</td>
</tr>
<tr>
<td>ENU 4612</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENU 4630</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENU 4641A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Assessment Types

- Assignments
- Exams
- Projects
• Presentations
• Additional assessment includes the senior exit survey