COMPUTER SCIENCE UF ONLINE

This program combines the study of computer science with a liberal arts education. It prepares students for employment as computing professionals while offering significant freedom to choose coursework in other areas. The major is especially popular with students who want the technical education in computer science with the flexibility to take other non-technical courses, sometimes in the form of a minor or certificate.

About this Program

- **College**: Liberal Arts and Sciences (http://catalog.ufl.edu/UGRD/colleges-schools/UGLAS/)
- **Degree**: Bachelor of Science
- **Credits for Degree**: 120
- **Contact**: 1.855.99GATOR
- **More Info**

To graduate with this major, students must complete all university, college, and major requirements.

Department Information

The mission of the Department of Computer & Information Science & Engineering is to educate students, as well as the broader campus community, in the fundamental concepts of the computing discipline; to create and disseminate computing knowledge and technology; and to use expertise in computing to help society solve problems. Website (https://www.cise.ufl.edu/)

CONTACT

352.392.1090
Email (ugadvisors@cise.ufl.edu)

P.O. Box 116120
E301 CSE BUILDING
GAINESVILLE FL 32611-6120
Map (http://campusmap.ufl.edu/#/index/0042)

Curriculum

- Combination Degrees
- Computer and Information Science and Engineering Minor
- Computer and Information Science and Engineering Minor UF Online
- Computer Science UF Online
- Computer Science | CLAS
- Computer Science | Herbert Wertheim College of Engineering
- Digital Arts and Sciences | Bachelor of Science

Computer science majors in CLAS take a solid foundation of core computer science courses while fulfilling requirements for a liberal arts education, including courses from the humanities, social and behavioral sciences, and the study of a foreign language. Questions about the major should be directed to a department advisor.

Coursework for the Major

This major requires a minimum of 29 credits in foundation coursework, 35 credits in core coursework, and 9 credits of major electives. Students must earn minimum grades of C in coursework for the major. An exit interview is required in the student's last semester.

A student can request to transfer in a maximum of four courses toward required core Computer Science or required Computer Science elective coursework, dependent upon courses being deemed equivalent by the Department. Course equivalency requests should begin with the department advising office, followed by the undergraduate coordinator.

Students may opt to take COP 3504C in lieu of COP 3502C and COP 3503C. If elected, students will need to complete an additional 4 credits to complete the degree program.

Combination Degree Program

The computer science combination-degree program is a joint program between the colleges of Engineering and Liberal Arts and Sciences and is coordinated by the Department of Computer and Information Science and Engineering.

Placement

Students who have scored at least a 4 or 5 on the AP Computer Science exam are eligible to start the programming fundamentals sequence with COP 3503C. Students will need to see an advisor in the major to adjust their degree audit.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC 3246</td>
<td>Professional Communication for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>or ENC 2210</td>
<td>Technical Writing</td>
<td></td>
</tr>
<tr>
<td>MAC 2311</td>
<td>Analytic Geometry and Calculus 1</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>Analytic Geometry and Calculus 2</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2313</td>
<td>Analytic Geometry and Calculus 3</td>
<td>4</td>
</tr>
<tr>
<td>MAS 4105</td>
<td>Linear Algebra 1</td>
<td>3-4</td>
</tr>
<tr>
<td>or MAS 3114</td>
<td>Computational Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>4-5</td>
</tr>
<tr>
<td>PHY 2048</td>
<td>Physics with Calculus 1</td>
<td></td>
</tr>
<tr>
<td>& 2048L</td>
<td>and Laboratory for Physics with Calculus 1</td>
<td></td>
</tr>
<tr>
<td>PHY 2053</td>
<td>Physics 1</td>
<td></td>
</tr>
<tr>
<td>& 2053L</td>
<td>and Laboratory for Physics 1</td>
<td></td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>4-5</td>
</tr>
<tr>
<td>PHY 2049</td>
<td>Physics with Calculus 2</td>
<td></td>
</tr>
<tr>
<td>& 2049L</td>
<td>and Laboratory for Physics with Calculus 2</td>
<td></td>
</tr>
<tr>
<td>PHY 2054</td>
<td>Physics 2</td>
<td></td>
</tr>
<tr>
<td>& 2054L</td>
<td>and Laboratory for Physics 2</td>
<td></td>
</tr>
<tr>
<td>STA 3032</td>
<td>Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>COP 3502C</td>
<td>Programming Fundamentals 1</td>
<td>4</td>
</tr>
<tr>
<td>COP 3503C</td>
<td>Programming Fundamentals 2</td>
<td>4</td>
</tr>
<tr>
<td>COT 3100</td>
<td>Applications of Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>COP 3530</td>
<td>Data Structures and Algorithm</td>
<td>3</td>
</tr>
<tr>
<td>COP 3504C</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CDA 3101</td>
<td>Introduction to Computer Organization</td>
<td>3</td>
</tr>
<tr>
<td>CEN 3031</td>
<td>Introduction to Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4301</td>
<td>Information and Database Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4914</td>
<td>Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>or EGN 4952</td>
<td>Integrated Product and Process Design</td>
<td></td>
</tr>
<tr>
<td>COP 4020</td>
<td>Programming Language Concepts</td>
<td>3</td>
</tr>
<tr>
<td>COP 4533</td>
<td>Algorithm Abstraction and Design</td>
<td>3</td>
</tr>
<tr>
<td>COP 4600</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>Required Major Electives</td>
<td>Any 4000-level or higher CISE course, beyond the Core Requirements</td>
<td>9</td>
</tr>
</tbody>
</table>
EEL 3701C Digital Logic and Computer Systems
EEL 4712C Digital Design
EEL 4713C Digital Computer Architecture
EEL 4744C Microprocessor Applications
EGN 4912 Engineering Directed Independent Research
CIS 4905 Individual Study in CISE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credits</td>
<td>73-76</td>
<td></td>
</tr>
</tbody>
</table>

1. Students should check prerequisites when planning their major electives. Students should discuss electives with an advisor in the department. Individual study, co-op, internship, research, and special topics credits must be approved by an advisor in the department.

Critical Tracking

Critical Tracking records each student's progress in courses that are required for progress toward each major. Please note the critical-tracking requirements below on a per-semester basis.

For degree requirements outside of the major, refer to CLAS Degree Requirements: Structure of a CLAS Degree.

Equivalent critical-tracking courses as determined by the State of Florida Common Course Prerequisites (http://www.flvc.org/cpp/displayRecord.jsp?cip=110101&track=01) may be used for transfer students.

Semester 1

- Complete MAC 1147 or MAC 2311
- 2.0 UF GPA required

Semester 2

- Complete MAC 2311
- 2.0 UF GPA required

Semester 3

- Complete MAC 2312
- 2.0 UF GPA required

Semester 4

- Complete MAC 2313; and PHY 2053/PHY 2053L or PHY 2048/PHY 2048L
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 5

- Complete COP 3502C or COP 3504C; and PHY 2054/PHY 2054L or PHY 2049/PHY 2049L
- 2.5 GPA required for all critical-tracking courses
- 2.0 UF GPA required

Semester 6

- Complete COP 3503C or COP 3504C; and COT 3100
- 2.0 UF GPA required

Semester 7

- Complete COP 3530
- 2.0 UF GPA required

Semester 8

- Complete COP 4600
- 2.0 UF GPA required

Model Semester Plan

Students are expected to complete the writing requirement while in the process of taking the courses below. Students are also expected to complete the general education international (GE-N) and diversity (GE-D) requirements concurrently with another general education requirement (typically, GE-C, H, or S).

ENC 3246, MAC 2312, MAC 2313, PHY 2049, PHY 2049L, PHY 2054, PHY 2054L, STA 3032, MAS 3114, and MAS 4105 may count towards 3000 level or above electives outside of the major.

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student's academic record and scheduling availability of courses. Prerequisites still apply.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester One</td>
<td>Quest 1 (Gen Ed Humanities)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COP 3502C Programming Fundamentals 1 (Critical Tracking)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MAC 2311 Analytic Geometry and Calculus 1 (Critical Tracking; Gen Ed Mathematics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>State Core Gen Ed Composition (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#genedcoursestext); Writing Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Semester Two</td>
<td>COP 3503C Programming Fundamentals 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COT 3100 Applications of Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAC 2312 Analytic Geometry and Calculus 2 (Critical Tracking; Gen Ed Mathematics)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one:</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>PHY 2048 Physics with Calculus 1 and Laboratory for Physics with Calculus 1 (Critical Tracking; State Core Gen Ed Physical Sciences)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PHY 2053 Physics 1 and Laboratory for Physics 1 (Critical Tracking; State Core Gen Ed Physical Sciences)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-16</td>
</tr>
</tbody>
</table>
Summer After Semester Two

State Core Gen Ed Biological Sciences (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#genedcoursestext)
State Core Gen Ed Social and Behavioral Sciences (http://catalog.ufl.edu/UGRD/academic-programs/general-education/#genedcoursestext)
Gen Ed Humanities
Credits 9

Semester Three

CDA 3101 Introduction to Computer Organization
COP 3530 Data Structures and Algorithm
MAC 2313 Analytic Geometry and Calculus 3 (Critical Tracking; Gen Ed Mathematics)
Select one:
PHY 2049 & 2049L Physics with Calculus 2 and Laboratory for Physics with Calculus 2 (Critical Tracking; Gen Ed Physical Sciences)
PHY 2054 & 2054L Physics 2 and Laboratory for Physics 2 (Critical Tracking; Gen Ed Physical Sciences)
Credits 14-15

Semester Four

Quest 2 (Gen Ed Biological or Social and Behavioral Science)
CEN 3031 Introduction to Software Engineering
CIS 4301 Information and Database Systems 1
ENC 3246 Professional Communication for Engineers (Gen Ed Composition)
MAS 3114 or MAS 4105 Computational Linear Algebra or Linear Algebra 1
Credits 15-16

Semester Five

COP 4600 Operating Systems
STA 3032 Engineering Statistics
Foreign language
Gen Ed Social and Behavioral Sciences
Credits 13-14

Semester Six

COP 4020 Programming Language Concepts
COP 4XXX Algorithm Abstraction and Design
Foreign language
Elective
Credits 12-14

Summer After Semester Six

Pursue Internship/Co-op (if desired)
Credits 0

Semester Seven

Gen Ed Biological Sciences OR Gen Ed Social and Behavioral Sciences (Area not taken ias Quest 2 in Semester 4)
Gen Ed Humanities
Technical electives
Foreign language course (or elective if 4-3-3 option)
Credits 15

Semester Eight

CIS 4914 Senior Project
Technical elective
Electives
Credits 13

Total Credits 120

Academic Learning Compact

The College of Liberal Arts and Sciences' computer science program exposes students to a broad range of disciplines, including programming languages, theory of computer science, physical science, mathematics and software engineering. Students will graduate with the ability to apply knowledge of science and mathematics to computer science problems, to design computer systems or components to satisfy users' needs and to communicate technical information regarding computer systems to other computer scientists. This program emphasizes the broader aspects of computer science and is less technical in depth than the computer science program in the Herbert Wertheim College of Engineering.

Before Graduating Students Must

• Pass assessment according to department rubric of student performance on a major design experience.
• Pass assessment in one or more core courses or individual assignments targeted to each SLO.
• Complete requirements for the baccalaureate degree, as determined by faculty.

Students in the Major Will Learn to

Student Learning Outcomes (SLOs)

Content

1. Apply knowledge of mathematics and science to computer science problems.
2. Design a computing system, component or process, analyzing and interpreting the data.
3. Use the techniques, skills and tools necessary for computer science practice.

Critical Thinking

4. Design a computing system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, and health and safety constraints.
5. Identify, formulate and solve computer science problems.

Communication

6. Communicate technical data and design information effectively in writing, in speech and in multidisciplinary teams to other computer scientists.

Curriculum Map

<table>
<thead>
<tr>
<th>Courses</th>
<th>SLO 1</th>
<th>SLO 2</th>
<th>SLO 3</th>
<th>SLO 4</th>
<th>SLO 5</th>
<th>SLO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDA 3101</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN 3031</td>
<td></td>
<td>I, A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS 4914</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>COP 3504</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP 3530</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP 4600</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COT 3100</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COT 4501</td>
<td>A, I, A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Types

• Written assignments
• Exams
• Oral reports/presentations
• Exit survey