MATERIALS SCIENCE AND ENGINEERING

Course Search

Not all courses are offered every semester. Refer to the schedule of courses for each term's specific offerings.

Courses at the University of Florida, with the exception of specific foreign language courses and courses in the online Master of Arts in Mass Communication program, are taught in English.

Courses

EGN 1935 Special Topics in Freshman Engineering 1-3 Credits
Laboratory, lectures or conferences cover selected topics in engineering.

EGN 4912 Engineering Directed Independent Research 3 Credits
Provides firsthand, supervised research with a faculty advisor or postdoctoral or graduate student mentor. Projects may involve inquiry, design, investigation, scholarship, discovery or application. (S-U)

EGS 1005 Prep for Success 1-4 Credits
Freshman success course that includes academic preparation in calculus, chemistry, student success and technical communications. (S-U)
Prereq: EG student

EGS 1006 Introduction to Engineering 1 Credit
Introduces the 11 departments that offer undergraduate degrees at UF. Students break into groups of 20, rotating weekly through each department. During these visits, students participate in hands-on experiments to help them make informed decisions about career alternatives.

EGS 1670 Engineering Innovations for the 21st Century 2 Credits
Students examine recent patents in engineering in order to learn the latest developments that will be used for components in the future. Students learn to analyze the presentation of a patent to determine usefulness of the patent, to understand the applicability of the courses taken in engineering to the development of the patent and to gain skills in distinguishing well-written patents from poorly written patents.

EMA 1004 Materials Impact on Society 3 Credits
Discovery and development of specific classes of materials are considered from the perspective of having dramatically altered the course of human history and societies. Materials are presented in historical and technical contexts and considered in terms of their political, financial, health and technology impacts.

EMA 3000L Sophomore Materials Laboratory 1 Credit
Conceptual perspective of the origin of materials behavior and the interrelationships of the materials tetrahedron: structure/property/performance/processing. Conduct experiments on the materials tetrahedron.
Coreq: EMA 3010

EMA 3010 Materials 3 Credits
Conceptual perspective for origin of materials behavior and the interrelationships of structure/property/performance. Materials selection and use of familiar material (metals, ceramics, polymers, electronic materials and composites) in electronics and structural and other engineering applications.
Prereq: CHM 2045

EMA 3011 Fundamental Principles of Materials 3 Credits
Covers the fundamental principles of structure, reactivity and energies describing materials systems, directly relating individual principles to specific materials properties or functions.
Prereq: CHM 2046 or CHM 2096

EMA 3013C Materials Laboratory 2 2 Credits
General undergraduate materials laboratory. (WR)
Prereq: EMA 3080C
WR2

EMA 3050 Introduction to Inorganic Materials 3 Credits
Uses, structure, processing and properties of inorganic materials, including metals, alloys and ceramics. Scientific principles are introduced through discussion of developed inorganic materials for high technology applications.
Prereq: EMA 3010

EMA 3066 Introduction to Organic Materials 3 Credits
Uses, structure, processing and properties of organic materials, including polymers, biomacromolecules and small molecule organic materials. Scientific principles are introduced through discussion of developed organic materials for high technology applications.
Prereq: EMA 3010 and one of the following: EMA 3011, CHM 2200 or CHM 2210

EMA 3080C Materials Laboratory 1 2 Credits
First part of the general undergraduate materials laboratory. (WR)
Prereq: EMA 3010 and EMA 3800
WR4

EMA 3123 Metallurgical Engineering 3 Credits
Preparation, structure, properties and applications of metals and alloys.
Prereq: EMA 3010

EMA 3413 Electronic Properties of Materials 3 Credits
Atomistic and quantum-mechanical description of the electrical, optical, magnetic and thermal properties of materials. Deals with metals, alloys, semiconductors, polymers, dielectrics and amorphous materials with special emphasis given to high technology applications of electronic materials.
Prereq: EMA 3010

EMA 3513C Analysis of the Structure of Materials 4 Credits
Laboratory fundamentals of crystallography, x-ray and electron diffraction, scanning and transmission electron microscopy, surface analysis and microprobe techniques.
Prereq: EMA 3010

EMA 3800 Error Analyses and Optimization Methodologies in Materials Research 3 Credits
Statistical approach for materials research, basic and relevant statistical concepts, error analyses, factorial matrices, reducing the variance, nested designs and sampling plans, mixture designs, optimization technology, response surface method and Taguchi.
Coreq: EMA 3010
EMA 4020L Metallurgy Laboratory 1 Credit
Concepts, skills, and techniques required for an understanding of metals and metallurgy processing.
Prereq: EMA 3050
Coreq: EMA 4120

EMA 4041L Advanced Ceramics Laboratory 1 Credit
Forming, drying, firing and testing of traditional ceramics.
Coreq: EMA 4645

EMA 4042L Advanced Ceramics Laboratory 2 1 Credit
Part two of the advanced ceramics laboratory in forming, drying, firing and testing of advanced ceramics.
Prereq: EMA 3050

EMA 4061 Biomaterials: Structure and Properties 3 Credits
Materials commonly used for biomedical application, such as their properties from a biocompatibility or medical device perspective. In addition, materials interactions with biological systems are examined from the molecular (e.g., protein), cellular, tissue and systemic (whole body) perspective. This is the foundation for the second biomaterials class, which applies these principles toward the application of biomaterials in medical implants, prostheses and devices, along with the regulatory issues associated with biomaterials development.
Coreq: EMA 3066

EMA 4061L Biomaterials Laboratory 1 Credit
Hands-on laboratory experience in the processing and characterization of biomaterials for use in medical applications.
Coreq: EMA 4061

EMA 4062 Biopolymers: Manufacture, Stability and Biocompatibility 3 Credits
Polymer manufacturing processes and biochemical/biophysical behavior are considered from the perspective of achieving those properties needed for the engineering of polymeric implants and devices. Unique economic, ethical and regulatory issues are also presented.
Prereq: EMA 4066

EMA 4120 Physical Metallurgy 1 3 Credits
In-depth discussion of fundamentals of physical metallurgy and principles of microstructure evolution.
Prereq: EMA 3050

EMA 4121 Interfacial Engineering 3 Credits
Correlation of properties, structural and mechanical history, thermal history and service behavior of various interfaces.
Prereq: EMA 3050, EMA 3066 and EMA 3413

EMA 4125 Transport Phenomena in Materials Processing 3 Credits
Science and application of momentum, heat and mass transport in materials and materials processing.
Prereq: EMA 3010 and MAP 2302

EMA 4144 Physical Ceramics 1 3 Credits
Structure of complex ceramic compounds and glasses. Influence of structural imperfections and stoichiometry on physical characteristics, surface and interfacial phenomena, diffusion and phase transformations in ceramic systems.
Prereq: EMA 3050

EMA 4145 Physical Ceramics 2 3 Credits
Prereq: EMA 3050

EMA 4161 Physical Properties of Polymers 3 Credits
Molecular structure and the physical property relationships for polymers: viscoelastic behavior, the glass transition, thermomechanical and rheological properties, the crystalline and amorphous molecular solid state. Correlation of properties with design engineering of polymer applications. Laboratory section included.
Prereq: EMA 3066 and EMA 3513C

EMA 4161L Polymers Laboratory 1 Credit
Concepts, skills, and techniques required for an understanding of polymer and polymer composite processing.
Coreq: EMA 4161

EMA 4223 Mechanical Behavior of Materials 3 Credits
Plastic deformation and fracture of metals and alloys, ceramics and polymers.
Prereq: EMA 3010

EMA 4224 Physical Metallurgy 2 3 Credits
In-depth discussion of fundamentals of alloy design, mechanical properties and failure mechanisms.
Prereq: EMA 4120 and EMA 4223

EMA 4314 Energetics and Kinetics in Materials Science 3 Credits
Foundations of energetics and kinetic theory with applications to processes in materials science.
Prereq: EMA 3010

EMA 4324 Stability of Materials 3 Credits
Mechanisms, energetics and kinetics of corrosion and degradation of engineering materials. Economic solutions to degradation problems based upon design and materials selection.
Prereq: EMA 4314

EMA 4414L Electronic Materials Laboratory 1 Credit
Hands-on experience for those specializing in electronic materials. Laboratory topics include characterization of optical and electronic properties of semiconductor materials, electronic devices characterization and semiconductor processing.
Coreq: EMA 4614

EMA 4462 Polymer Characterization 3 Credits
Use of a broad variety of spectroscopic and other scattering phenomena in polymer research.
Prereq: EMA 3066 or equivalent

EMA 4614 Production of Electronic Materials 3 Credits
Production of materials for use in solid state electronic devices; nucleation and growth kinetics, solidification of single phase alloys, segregation, dynamics of crystal growth, selection of materials and growth techniques, characterization.
Prereq: EMA 3413

EMA 4615 Compound Semiconductor Materials 3 Credits
Physical properties of technologically important compound semiconductor materials. Epitaxial growth and practical application of compound semiconductor heterostructures.
Prereq: EEE 3396

EMA 4623 Process Metallurgy 3 Credits
Engineering aspects of mineral processing, including unit operations and flow sheets. Science and technology of metal extraction with applications to specific ferrous and non-ferrous metals.
Coreq: EMA 4120
EMA 4630C Metals Casting 2 Credits
Melting and solidification of metals and alloys including heat flow, solute redistribution, casting defects, micro- and macrosegregation. Foundry techniques including sand casting, permanent mold casting, investment casting and die casting.
Prereq: EMA 3123

EMA 4645 Processing of Ceramic Materials 3 Credits
Introduces the technology and science of processing ceramic materials, including traditional clay-based ceramics, modern technical ceramics and glasses. Topics include the nature of fine particles, forming methods and consolidation by heat.
Prereq: EMA 3050

EMA 4666 Polymer Processing 3 Credits
Major processing methods for polymers and polymeric composites as related to the rheological behavior of these systems. Synthesis of polymers via industrial processes.
Prereq: EMA 3066

EMA 4714 Materials Selection and Failure Analysis 3 Credits
Philosophy and practice of engineering selection of materials. Case studies in product liability and failure analysis.
Prereq: EMA 4223 and EMA 4324

EMA 4740 Ceramic Engineering Design 2 Credits
Molecular composition, design of ceramic bodies and glazes, design use histories and computer-based design projects.
Prereq: EMA 4144

EMA 4760 Plastics Engineering Design 3 Credits
Utilizes knowledge of processing and properties of plastics for the proper design of products, molds, etc.
Prereq: EMA 4666C
Coreq: EMA 4666C

EMA 4905 Individual Work 1-4 Credits
Selected problems or projects in the student’s major field of engineering study.

EMA 4913 Research in Materials Science and Engineering 1 Credit
Short research problems in materials science and engineering, usually including a final thesis.

EMA 4914 Research in Materials Science and Engineering 2 3 Credits
Continuation of EMA 4913: short research problems in materials science and engineering, usually including a final thesis.

EMA 4915 Integrated Product and Process Design Program 1 3 Credits
First part of a two-course sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes-on time and within budget. Working closely with industry liaison engineers and a faculty coach, students gain practical experience in teamwork and communication, problem solving and engineering design, and develop leadership, management and people skills.

EMA 4916 Integrated Product and Process Design Program 2 3 Credits
Second part of the integrated product and process design sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes-on time and within budget.

EMA 4935 Special Topics 1-3 Credits
Laboratory, lectures or conferences covering selected topics in materials science and engineering.

EMA 4949 Co-Op Work Experience 1 Credit
Practical engineering work under industrial supervision, as set forth in the Herbert Wertheim College of Engineering regulations. (S-U)
Prereq: one-term industrial employment, including extra work according to a pre-approved outline