MECHANICAL & AEROSPACE ENGINEERING

Not all courses are offered every semester. Refer to the schedule of courses for each term’s specific offerings. More Info (http://registrar.ufl.edu/soc/)

Unless otherwise indicated in the course description, all courses at the University of Florida are taught in English, with the exception of specific foreign language courses.

Department Information
The Department of Mechanical and Aerospace Engineering (MAE) is the largest academic program on campus by student enrollment. The Mechanical Engineering program celebrated its 100 year anniversary in 2009 and is one of the founding departments of the Herbert Wertheim College of Engineering. More than a decade after the successful merger of the mechanical and aerospace programs, MAE remains a vibrant and intellectually diverse program at both the undergraduate and graduate level.
Website (https://mae.ufl.edu/)

CONTACT
352.392.0961 (tel) | 352.392.7303 (fax)
P.O. Box 116250
571 Gale Lemerand Drive
MECHANICAL & AEROSPACE ENGINEERING C
GAINESVILLE FL 32611-6250
Map (http://campusmap.ufl.edu/#/index/0183)

Curriculum
• Aerospace Engineering
• Biomechanics Minor
• Combination Degrees
• Mechanical Engineering

The prerequisites for all courses offered by the Department of Mechanical and Aerospace Engineering may require classification as a student in good standing in aerospace engineering, mechanical engineering, and/or another engineering program for which the particular course is required.

Courses

ATT 2100 Learn to Fly 3 Credits
Grading Scheme: Letter Grade
Science and engineering of flight. Preparation for FAA private pilot written exam. Underlying engineering principles of design, operation, and construction of aircraft. Aerodynamics, aerospace materials, structures, propulsion, aircraft instrumentation, stability and control, flight planning, safe aircraft operation, and pilot physiology.
Prerequisite: PHY 2048 with a minimum grade of C.

EAS 3020C Introduction to Flight 3 Credits
Grading Scheme: Letter Grade
Introduction to the science and engineering of aircraft. Overview of applied aerodynamics, performance, stability, propulsion and structures. Includes lab sessions flying and making measurements in a general aviation aircraft.
Prerequisite: (PHY 2048 or PHY 2053) and MAC 2311; or instructor permission.

EAS 4101 Aerodynamics 3 Credits
Grading Scheme: Letter Grade
Incompressible aerodynamics, integral and differential governing equations, potential flow, boundary layers, airfoils, wings, numerical techniques.
Prerequisite: (EAS 2011 or EAS 3020C or EGN 3353C) and COP 2271 and EML 3100 and MAC 2313 and MAP 2302 with minimum grades of C.

EAS 4132 Compressible Flow 3 Credits
Grading Scheme: Letter Grade
One-dimensional and quasi one-dimensional compressible fluid flows. Includes mach waves, normal shocks, oblique shocks, Prandtl-Meyer expansions, isentropic flow with area change, Fanno flow and Rayleigh flow.
Prerequisite: EAS 4101 or EGN 3353C

EAS 4200 Aerospace Structures 3 Credits
Grading Scheme: Letter Grade
Review of plane states of stress and strain. Includes analysis of thin-walled beams with open and closed section, unsymmetrical bending of wing sections, torsion of skin-stringer and multi-cell sections, flexural shear in open and closed sections, Shear Center and failure criteria. Also includes introduction to composite materials and demonstration of behavior of some simple structural elements.
Prerequisite: EGM 3520 with minimum grade of C.

EAS 4240 Aerospace Composites 3 Credits
Grading Scheme: Letter Grade
Various types and applications of structural composites used in flight structures. Also includes an introduction to analysis of structural composites.
Prerequisite: EGM 3520 with minimum grade of C.

EAS 4300 Aerodynamics 3 Credits
Grading Scheme: Letter Grade
Incompressible aerodynamics, integral and differential governing equations, potential flow, boundary layers, airfoils, wings, numerical techniques.
Prerequisite: (EAS 2011 or EAS 3020C or EGN 3353C) and COP 2271 and EML 3100 and MAC 2313 and MAP 2302 with minimum grades of C.

EAS 4400 Stability and Control of Aircraft 3 Credits
Grading Scheme: Letter Grade
Static stability and control, equations of motion, stability derivatives, stability of longitudinal and lateral motion of aircraft.
Prerequisite: EAS 4101 and EML 4312.

EAS 4412 Dynamics and Control of Space Vehicles 3 Credits
Grading Scheme: Letter Grade
Review of aerospace applications in current guidance and control systems. Includes synthesis of open and closed loop guidance and control systems using classical and modern control theory.
Prerequisite: EGM 4313 or MAP 4305 or MAP 5304
EAS 4510 Astrodynamics 3 Credits
Grading Scheme: Letter Grade
Introduces the solar system. Includes study of two-body motion, Hohmann transfer, patched conics for interplanetary and lunar trajectories, and the restricted three-body problem. Also includes an introduction to powered flights and artificial satellite orbits.
Prerequisite: EGM 3401 with minimum grade of C and (EGM 4313 or MAP 4305 or MAP 5304).

EAS 4530 Space Systems Design 3 Credits
Grading Scheme: Letter Grade
A discussion of the component systems of a spacecraft and a typical mission's requirements. The operation and character of different spacecraft hardware is presented as well as typical mission timelines from early conception to final operations. Topics include the space environment, guidance/control/navigation systems, spacecraft sensors and actuators, propulsion systems, thermal systems, power systems, launch systems, communication systems, structural systems and mission operations. This course is useful to engineers, scientists, computer scientists and any profession that uses data.
Prerequisite: EAS 4510.

EAS 4700 Aerospace Design 1 3 Credits
Grading Scheme: Letter Grade
Applications of the principles of analysis and design to aerospace vehicles. Emphasizes aeronautics.
Prerequisite: EAS 4510 and EML 4312.

EAS 4710 Aerospace Design 2 3 Credits
Grading Scheme: Letter Grade
Applications of the principles of analysis and design to aerospace vehicles. Emphasizes aeronautics.
Prerequisite: EAS 4101 and EAS 4400.

EAS 4810C Aerospace Sciences Lab and Design 3 Credits
Grading Scheme: Letter Grade
Experimental investigations of aerospace engineering systems. Wind tunnel testing. Design project with experimental validation.
Prerequisite: EAS 4101 and EAS 4132 and EML 3301C.

EAS 4905 Individual Study in Aerospace Engineering 1-4 Credits
Grading Scheme: Letter Grade
Selected problems or projects in the student's major field of engineering study.
Prerequisite: department chair recommendation.

EAS 4912 Integrated Product and Process Design 1 3 Credits
Grading Scheme: Letter Grade
The first of a two-course sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes on time and within budget. Working closely with industry liaison engineers and a faculty coach, students gain practical experience in teamwork and communication, problem solving and engineering design, and develop leadership, management and people skills.
Prerequisite: EAS 4101 and EML 3301C.

EAS 4913 Integrated Product and Process Design 2 3 Credits
Grading Scheme: Letter Grade
The second part of the integrated design sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes on time and within budget.
Prerequisite: EAS 4912.

EAS 4939 Special Topics in Aerospace Engineering 1-4 Credits
Grading Scheme: Letter Grade
Special topics in aerospace engineering.
Prerequisite: Engineering major of junior standing or higher.

EAS 4949 Co-op Work Experience 1 Credit
Grading Scheme: S/U
Practical engineering work under industrial supervision, as set forth in the college regulations.
Prerequisite: Engineering major of sophomore standing or higher.

EAS 4950C Aerospace Design 3 Credits
Grading Scheme: Letter Grade
Continues the dynamics sequence begun in EGM 3400 plus extended coverage of three-dimensional rigid-body dynamics and orbital motion.
Prerequisite: EGM 2511 or EGM 2500, and MAC 2313.

EAS 4951 Engineering Mechanics: Statics 3 Credits
Grading Scheme: Letter Grade
Stress and strain at a point, stress-strain-temperature relations and mechanical properties of materials. Systems subject to axial load, torsion and bending. Design concepts, indeterminate structures and applications.
Prerequisite: EGM 2511 and MAC 2313.

EAS 4952 Mechanics of Materials 3 Credits
Grading Scheme: Letter Grade
Applications.
Prerequisite: EGM 2511 and MAC 2313.

EAS 4953 Intermediate Engineering Analysis 3 Credits
Grading Scheme: Letter Grade
Prerequisite: MAP 2302 and EGM 3344.

EAS 4959 Biodynamics 3 Credits
Grading Scheme: Letter Grade
Introduction to solid and fluid mechanics of biological systems. Includes rheological behavior of materials subjected to static and dynamic loading, the mechanics of cardiovascular, pulmonary and renal systems, and the mathematical models and analytical techniques used in biosciences.
Prerequisite: EGM 3520.
EGM 4853 Bio-Fluid Mechanics and Bio-Heat Transfer 3 Credits
Grading Scheme: Letter Grade
A study of biothermal fluid sciences with an emphasis on the physiological processes occurring in human blood circulation and the underlying mechanisms from an engineering prospective.
Prerequisite: EGN 3353C.

EGN 3353C Fluid Mechanics 3 Credits
Grading Scheme: Letter Grade
Prerequisite: MAC 2313 with a minimum grade of C and EGM 2511 and (EML 3100 or EML 3007 or BME 3060).

EGN 4912 Engineering Directed Independent Research 0-3 Credits
Grading Scheme: S/U
Provides firsthand, supervised research with a faculty advisor or postdoctoral or graduate student mentor. Projects may involve inquiry, design, investigation, scholarship, discovery or application. (S-U)
Prerequisite: EG student.

EMA 4450 Li-ion Next Generation Batteries 3 Credits
Grading Scheme: Letter Grade
Qualities and reactions that characterize Li-ion batteries and other electrochemical cells. Emphasis on mechanical properties. Li-ion and Sodium-ion batteries, fuel cells, capacitors, and hydrogen storage.
Prerequisite: EGM 3520 with a minimum grade of C and EMA 3010.

EML 2023 Computer Aided Graphics and Design 3 Credits
Grading Scheme: Letter Grade
Sketching, descriptive geometry, computer graphics, computer aided drafting and design projects.

EML 2322L Design and Manufacturing Laboratory 2 Credits
Grading Scheme: Letter Grade
Study and application of design, problem formulation, conceptual design, prototype development. Study of common manufacturing processes.
Prerequisite: EML 2023 and ENC 3246 and (Aerospace Engineering or Mechanical Engineering major).

EML 2920 Department and Professional Orientation 1 Credit
Grading Scheme: Letter Grade
Principles of mechanical and aerospace engineering practice, professional standards, engineering ethics.

EML 3005 Mechanical Engineering Design 1 3 Credits
Grading Scheme: Letter Grade
Design process, kinematics, gear trains, and standard mechanical components.
Prerequisite: COP 2271 and EML 2322L and EGM 3520 with a minimum grade of C and EGM 3401 with a minimum grade of C.

EML 3100 Thermodynamics 3 Credits
Grading Scheme: Letter Grade
Application of the first and second laws of thermodynamics to closed and open systems and to cyclic heat engines. Includes the development of procedures for calculating the properties of multiphase and singlephase pure substances.
Prerequisite: CHM 2045, MAC 2313 and PHY 2048.

EML 3301C Mechanics of Materials Laboratory 3 Credits
Grading Scheme: Letter Grade
Experimental characterization of the mechanical properties of engineering materials, precision instruments, computer-based data acquisition, statistical uncertainty analysis, preparation of engineering reports. (WR)
Prerequisite: EMA 3010 and (EGM 3520 with a minimum grade of C) and COP 2271 and (ENC 2210 or ENC 3254 or ENC 3246).
Attributes: Satisfies 6000 Words of Writing Requirement

EML 4140 Heat Transfer 3 Credits
Grading Scheme: Letter Grade
Steady state and transient analysis of conduction and radiation heat transfer in stationary media. Also discusses heat transfer in fluid systems, including forced and free convection.
Prerequisite: MAP 2302 with minimum grade of C and (EAS 4101 or EGN 3353C).

EML 4147C Thermal Sciences Design and Laboratory 3 Credits
Grading Scheme: Letter Grade
Thermodynamics, fluid mechanics, and heat transfer integrated with design and laboratory.
Prerequisite: EML 3100 with a minimum grade of C and EML 3301C and EML 4140.

EML 4220 Vibrations 3 Credits
Grading Scheme: Letter Grade
Design and laboratories for turbomachinery, compressible flow, chemical reactions, and thermodynamic cycles.
Prerequisite: EGN 3353C and EML 3100 and EML 3301C.

EML 4304C Thermo/Fluid Design and Laboratory 3 Credits
Grading Scheme: Letter Grade
Design and laboratories for turbomachinery, compressible flow, chemical reactions, and thermodynamic cycles.
Prerequisite: EGN 3353C and EML 3100 and EML 3301C.

EML 4312 Control of Mechanical Engineering Systems 3 Credits
Grading Scheme: Letter Grade
Theory, analysis and design of control systems, including mechanical, electromechanical, hydraulic, pneumatic, and thermal components and systems.
Prerequisite: EGM 3401 and EGM 3344 and MAP 2302 with minimum grades of C.

EML 4314C Dynamics and Controls System Design Laboratory 3 Credits
Grading Scheme: Letter Grade
Experiments on dynamic systems in mechanical and aerospace engineering and design of relevant control systems.
Prerequisite: EML 3301C and EML 4312.

EML 4321 Manufacturing Engineering 3 Credits
Grading Scheme: Letter Grade
Traditional and nontraditional manufacturing processes and equipment. Application of engineering analysis tools to manufacturing.
Prerequisite: EMA 3010 and EML 2322L and EML 3005.

EML 4410 Combustion Engineering 3 Credits
Grading Scheme: Letter Grade
Fundamentals of combustion processes and systems; including thermochemistry, rates and mechanisms, pollutant analysis, premixed and diffusion flames and applications to engines and turbomachinery.
Prerequisite: EML 3100.
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading Scheme</th>
<th>Prerequisite</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EML 4450</td>
<td>Energy Conversion 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Thermomechanical and thermoelectric energy conversion, conventional and unconventional techniques and analysis of energy systems interactions.</td>
</tr>
<tr>
<td>EML 4500C</td>
<td>Reengineering Historic Machinery 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Studies historic commercial machine or vehicle, including theory of operation, embedded engineering principles, and design. Reengineering and design of enhancements. Laboratory includes disassembly, observation of characteristics and conditions, implementation of enhancements, and rebuilding.</td>
</tr>
<tr>
<td>EML 4501</td>
<td>Mechanical Engineering Design 2 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Integrated design and presentation of a mechanical system.</td>
</tr>
<tr>
<td>EML 4502</td>
<td>Mechanical Engineering Design 3 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Design and realization of a mechanical engineering system, component, or process subject to appropriate standards and constraints. Team Project.</td>
</tr>
<tr>
<td>EML 4507</td>
<td>Finite Element Analysis and Design 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Stress-strain analysis and design of machine elements and finite element analysis.</td>
</tr>
<tr>
<td>EML 4600</td>
<td>Refrigeration and Air Conditioning Fundamentals 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Fundamentals of refrigeration theory, vapor compression and absorption, refrigeration components and systems, psychrometric theory, analysis of cooling and dehumidifying coils.</td>
</tr>
<tr>
<td>EML 4601</td>
<td>Heating and Air Conditioning System Design 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Heating and air conditioning systems: equipment selection, system arrangement, load calculations, advanced psychrometrics, duct and piping system design, air distribution system design and indoor air quality.</td>
</tr>
<tr>
<td>EML 4722</td>
<td>Introduction to Computational Fluid Dynamics 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>General theory, skepticism, and practice of computational fluid dynamics. Computational grids and generation, boundary conditions, fluid dynamics, numerical methods, visualization, turbulence modelling, and various special topics.</td>
</tr>
<tr>
<td>EML 4737</td>
<td>Hydronics and Pneumatics for Building Systems 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Applications, design, maintenance and operations of various pneumatic, hydronic and other process systems. Includes in-depth design concepts and techniques as well as preparation of specifications and cost estimates.</td>
</tr>
<tr>
<td>EML 4738</td>
<td>Hydraulic and Mechanical Power Transmission 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Transmission of power in machines by hydraulic and mechanical means, including analytical design of components and their functions.</td>
</tr>
<tr>
<td>EML 4905</td>
<td>Individual Study in Mechanical Engineering 1-3 Credits</td>
<td>1-3</td>
<td>Letter Grade</td>
<td></td>
<td>Selected problems or projects in the student's major field of engineering study.</td>
</tr>
<tr>
<td>EML 4912</td>
<td>Integrated Product and Process Design 1: Mechanical Engineering 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>The first part of a two-course sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes-on time and within budget. Working closely with industry liaison engineers and a faculty coach, students gain practical experience in teamwork and communication, problem solving and engineering design, and develop leadership, management and people skills.</td>
</tr>
<tr>
<td>EML 4913</td>
<td>Integrated Product and Process Design 2: Mechanical Engineering 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>The second part of the integrated design sequence in which multidisciplinary teams of engineering and business students partner with industry sponsors to design and build authentic products and processes-on time and within budget.</td>
</tr>
<tr>
<td>EML 4926</td>
<td>Mechanical Consulting Practice 3 Credits</td>
<td>3</td>
<td>Letter Grade</td>
<td></td>
<td>Synthesis and analysis of mechanical engineering systems, planning and execution of engineering contracts, and supervision of construction and tests.</td>
</tr>
<tr>
<td>EML 4930</td>
<td>Special Topics in Mechanical Engineering 1-3 Credits</td>
<td>1-3</td>
<td>S/U</td>
<td></td>
<td>Selected problems or projects in the student's major field of engineering study.</td>
</tr>
<tr>
<td>EML 4949</td>
<td>Co-op Work Experience 1 Credit</td>
<td>1</td>
<td>S/U</td>
<td></td>
<td>Practical co-op work experience under approved industrial supervision.</td>
</tr>
</tbody>
</table>

Prerequisite: Engineering major of junior standing or higher.